-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add test that unets do not translate state
- Loading branch information
Showing
1 changed file
with
81 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
import jax | ||
import jax.numpy as jnp | ||
import pytest | ||
|
||
import pdequinox as pdeqx | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"num_spatial_dims,num_points,num_levels", | ||
[ | ||
(num_spatial_dims, num_points, num_levels) | ||
for num_spatial_dims in (1, 2, 3) | ||
for num_points in (36,) | ||
for num_levels in (0, 1, 2) | ||
], | ||
) | ||
def test_unet_translation(num_spatial_dims: int, num_points: int, num_levels: int): | ||
grid_1d = jnp.linspace(0, 1.0, num_points, endpoint=False) | ||
|
||
grid = jnp.stack( | ||
jnp.meshgrid(*[grid_1d for _ in range(num_spatial_dims)], indexing="ij") | ||
) | ||
|
||
u_0 = jnp.sin(2 * jnp.pi * grid[0:1]) | ||
|
||
if num_spatial_dims >= 2: | ||
u_0 *= jnp.sin(4 * jnp.pi * grid[1:2]) | ||
|
||
if num_spatial_dims >= 3: | ||
u_0 *= jnp.sin(6 * jnp.pi * grid[2:3]) | ||
|
||
unet = pdeqx.arch.ClassicUNet( | ||
num_spatial_dims, | ||
1, | ||
1, | ||
hidden_channels=1, | ||
num_levels=num_levels, | ||
use_norm=False, | ||
key=jax.random.PRNGKey(0), | ||
) | ||
|
||
# Change all kernels to identity and biases to zero | ||
arr, structure = jax.tree.flatten(unet) | ||
|
||
arr_new = [] | ||
|
||
for a in arr: | ||
if isinstance(a, jnp.ndarray): | ||
if a.ndim == num_spatial_dims + 1: | ||
# Bias | ||
arr_new.append(jnp.zeros_like(a)) | ||
elif a.ndim == num_spatial_dims + 2: | ||
# Convolutional kernel | ||
new_kernel = jnp.zeros_like(a) | ||
if a.shape[-1] == 3: | ||
if num_spatial_dims == 1: | ||
new_kernel = new_kernel.at[..., 1].set(1.0) | ||
elif num_spatial_dims == 2: | ||
new_kernel = new_kernel.at[..., 1, 1].set(1.0) | ||
elif num_spatial_dims == 3: | ||
new_kernel = new_kernel.at[..., 1, 1, 1].set(1.0) | ||
elif a.shape[-1] == 1: | ||
new_kernel = new_kernel.at[..., 0].set(1.0) | ||
else: | ||
raise ValueError(f"Invalid kernel shape {a.shape}") | ||
arr_new.append(new_kernel) | ||
else: | ||
arr_new.append(a) | ||
|
||
print(arr_new) | ||
|
||
unet_new = jax.tree_util.tree_unflatten(structure, arr_new) | ||
|
||
u_0_processed = unet_new(u_0) | ||
|
||
if num_spatial_dims == 1: | ||
assert u_0_processed[..., 1] == pytest.approx(u_0[..., 1]) | ||
elif num_spatial_dims == 2: | ||
assert u_0_processed[..., 1, 1] == pytest.approx(u_0[..., 1, 1]) | ||
elif num_spatial_dims == 3: | ||
assert u_0_processed[..., 1, 1, 1] == pytest.approx(u_0[..., 1, 1, 1]) |