Skip to content

Commit

Permalink
test
Browse files Browse the repository at this point in the history
  • Loading branch information
laurentperrinet committed Feb 22, 2024
1 parent 53a7eed commit 101f1fa
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion content/authors/laurent-u-perrinet/_index.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,4 +49,4 @@ user_groups:
- Animators

---
Laurent Perrinet is a computational neuroscientist specialized in large scale spiking neural network models of low-level vision, perception and action, currently at the "[Institut de Neurosciences de la Timone](https://www.int.univ-amu.fr)" (France), a joint research unit (CNRS / Aix-Marseille Université, UMR7289). He co-authored more than 60 articles in computational neuroscience and computer vision. He graduated from the aeronautics engineering school SUPAERO, in Toulouse (France) with a signal processing and applied mathematics degree. He received a PhD in Cognitive Science in 2003 on the mathematical analysis of temporal spike coding of images by using a multi-scale and adaptive representation of natural scenes. His research program is focusing in bridging the complex dynamics of realistic, large-scale models of spiking neurons with functional models of low-level vision. In particular, as part of the FACETS and BrainScaleS consortia, he has developed experimental protocols in collaboration with neurophysiologists to characterize the response of population of neurons. Recently, he extended models of visual processing in the framework of predictive processing in collaboration with the team of Karl Friston at the University College of London. This method aims at characterizing the processing of dynamical flow of information as an active inference process. His current challenge within the <a href="https://www.int.univ-amu.fr/spip.php?page=equipe&equipe=NeOpTo&lang=en">NeOpTo team</a> is to translate, or *compile* in computer terminology, this mathematical formalism with the event-based nature of neural information with the aim of pushing forward the frontiers of Artificial Intelligence systems.
Laurent Perrinet is a computational neuroscientist specialized in large scale neural network models of low-level vision, perception and action, currently at the "[Institut de Neurosciences de la Timone](https://www.int.univ-amu.fr)" (France), a joint research unit (CNRS / Aix-Marseille Université, UMR7289). He co-authored more than 60 articles in computational neuroscience and computer vision. He graduated from the aeronautics engineering school SUPAERO, in Toulouse (France) with a signal processing and applied mathematics degree. He received a PhD in Cognitive Science in 2003 on the mathematical analysis of temporal spike coding of images by using a multi-scale and adaptive representation of natural scenes. His research program is focusing in bridging the complex dynamics of realistic, large-scale models of spiking neurons with functional models of low-level vision. In particular, as part of the FACETS and BrainScaleS consortia, he has developed experimental protocols in collaboration with neurophysiologists to characterize the response of population of neurons. Recently, he extended models of visual processing in the framework of predictive processing in collaboration with the team of Karl Friston at the University College of London. This method aims at characterizing the processing of dynamical flow of information as an active inference process. His current challenge within the <a href="https://www.int.univ-amu.fr/spip.php?page=equipe&equipe=NeOpTo&lang=en">NeOpTo team</a> is to translate, or *compile* in computer terminology, this mathematical formalism with the event-based nature of neural information with the aim of pushing forward the frontiers of Artificial Intelligence systems.

0 comments on commit 101f1fa

Please sign in to comment.