Skip to content

Douglas-Peucker Spatio-Temporal algorithm for trajectory generalization

Notifications You must be signed in to change notification settings

CKerouanton/dpstR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

dpstR

Douglas-Peucker Spatio-Temporal algorithm for trajectory generalization

Douglas-Peucker spatio-temporal algorithm

This algorithm is usually adopted for polylines generalization (a simple explanation can be found here ), and it can be applied to trajectories. Originally working with spatial coordinates, several authors utilize a spatio-temporal version of the algorithme ( L. Etienne, 2011 ; Zheng & Zhou, 2011 ). The two functions described here are from Laurent Etienne Phd and from R package "kmlshape".

Function

Two functions are needed to compute Douglas-Peucker spatio-temporal algorithm : The 'DPST' function is extracted from kmlShape function 'DouglasPeuckerEpsilon . It takes for inputs spatial coordinates, time. The parameter epsilon is the distance between original trajectory and new trajectory segments, for which generalization stops. The 'furhtest' function looks for the furthest point to the tested trajectory segment, with a spatio-temporal projection

References

  • Etienne, L. (2011). Motifs spatio-temporels de trajectoires d'objets mobiles, de l'extraction à la détection de comportements inhabituels. Application au trafic maritime (Doctoral dissertation, Université de Bretagne occidentale-Brest).
  • Zheng, Y., & Zhou, X. (Eds.). (2011). Computing with spatial trajectories. Springer Science & Business Media.

About

Douglas-Peucker Spatio-Temporal algorithm for trajectory generalization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages