Skip to content

TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

License

Notifications You must be signed in to change notification settings

CINJ/imagenet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AlexNet training on ImageNet LSVRC 2012

alt text

This repository contains an implementation of AlexNet convolutional neural network and its training and testing procedures on the ILSVRC 2012 dataset, all using TensorFlow.

Folder tf contains code in the "classic TensorFlow" framework whereas code in the tf_eager directory has been developed with TensorFlow's new impearative style, TensorFlow eager.

The two implementations are independent and refer to the READMEs inside the folders for specific instruction on how to train and to test.

References

  • Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Inforamtion Processing Systems 25, 2012.
  • Olga Russakovsky°, Jia Deng°, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (° = equal contribution) ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015

About

TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%