Skip to content

CHNtao/SGS-SNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SGS-SNN

Surrogate Gradient Scaling for Directly Training Spiking Neural Networks

This paper has been submitted to Applied Intelligence. The complete code will be made public when our paper is accepted.

Figures

/SGS-SNN/fig3.png /SGS-SNN/fig7.png

Requirements

  • Python 3.9.7
  • Torch 1.10.1
  • Torchvision 0.11.2
  • Numpy 1.22.0

Datasets

TO DO

  • layers.py: surrogate gradient scaling function corresponds to Eq. (5) in our paper.
  • my_main.py: Specify the dataset location ; Specify .pth file location. Inference model
  • train.py: release soon

Usage

  • run my_main.py on CIFAR10, T=2, can achieve accuracy of 94% where in our ablation study of our manuscript.
python my_main.py

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages