Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Miscellaneous Changes #51

Merged
merged 5 commits into from
Dec 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion src/NanoParticleTools/builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,12 +53,14 @@
**kwargs)
self.connect()

def get_grouped_docs(self) -> List[Dict]:
def get_grouped_docs(self, additional_keys: List = None) -> List[Dict]:
group_keys = [
"data.n_dopants", "data.n_dopant_sites", "data.formula",
"data.nanostructure_size", "data.formula_by_constraint",
"data.excitation_power", "data.excitation_wavelength"
]
if additional_keys is not None and isinstance(additional_keys, list):
group_keys += additional_keys

Check warning on line 63 in src/NanoParticleTools/builder.py

View check run for this annotation

Codecov / codecov/patch

src/NanoParticleTools/builder.py#L63

Added line #L63 was not covered by tests
return self.source.groupby(keys=group_keys,
criteria=self.docs_filter,
properties=["_id"])
Expand Down
11 changes: 6 additions & 5 deletions src/NanoParticleTools/machine_learning/data/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,12 @@
import os

SUNSET_SPECIES_TABLE = {
1: ["Yb", "Er", "Mg"],
2: ["Yb", "Er"],
3: ["Yb", "Er", "Mg", "Tm"],
4: ["Yb", "Er"],
5: ["Yb", "Er", "Nd"]
1: sorted(["Yb", "Er", "Xsurfacesix"]),
2: sorted(["Yb", "Er"]),
3: sorted(["Yb", "Er", "Xsurfacesix", "Tm"]),
4: sorted(["Yb", "Er"]),
5: sorted(["Yb", "Er", "Nd"]),
6: sorted(['Yb', 'Er', "Xsurfacesix", 'Tm', 'Nd', 'Ho', 'Eu', 'Sm', 'Dy'])
}


Expand Down
4 changes: 2 additions & 2 deletions src/NanoParticleTools/machine_learning/modules/ensemble.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ def ensemble_forward(self, data: Data,
output.append(y_hat)

x = torch.cat(output, dim=-1)
return {'y': x, 'y_hat': x.mean(-1), 'std': x.std()}
return {'y': x, 'y_hat': x.mean(-1), 'std': x.std(-1)}

def evaluate_step(self, data: Data) -> tuple[torch.Tensor, torch.Tensor]:
output = []
Expand All @@ -52,6 +52,6 @@ def predict_step(

x = torch.cat(output, dim=-1)
if return_stats:
return {'y': x, 'y_hat': x.mean(-1), 'std': x.std()}
return {'y': x, 'y_hat': x.mean(-1), 'std': x.std(-1)}
else:
return x.mean(-1)
26 changes: 19 additions & 7 deletions src/NanoParticleTools/optimization/callbacks.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from NanoParticleTools.util.visualization import plot_nanoparticle_from_arrays
from NanoParticleTools.util.visualization import plot_nanoparticle
from NanoParticleTools.machine_learning.data import FeatureProcessor

from maggma.stores import Store
Expand All @@ -11,7 +11,8 @@
from uuid import uuid4


def get_plotting_fn(feature_processor: FeatureProcessor) -> Callable:
def get_plotting_fn(feature_processor: FeatureProcessor,
as_np_array: bool = False) -> Callable:
n_elements = len(feature_processor.possible_elements)

def plotting_fn(x, f=None, accept=None):
Expand All @@ -20,19 +21,30 @@ def plotting_fn(x, f=None, accept=None):

plt.figure()
n_constraints = len(x) // (n_elements + 1)
plot_nanoparticle_from_arrays(
fig = plot_nanoparticle(
np.concatenate(([0], x[-n_constraints:])),
x[:-n_constraints].reshape(n_constraints, -1),
dpi=80,
elements=feature_processor.possible_elements,
)
dpi=300,
elements=feature_processor.possible_elements)
if f is not None:
plt.text(0.1,
0.95,
f'UV Intensity={np.power(10, -f)-100:.2f}',
fontsize=20,
transform=plt.gca().transAxes)
return plt
if as_np_array:
# If we haven't already shown or saved the plot, then we need to
# draw the figure first.
fig.canvas.draw()
# Now we can save it to a numpy array.
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))

# Close the figure to remove it from the buffer
plt.close(fig)
return data
else:
return fig

return plotting_fn

Expand Down
5 changes: 3 additions & 2 deletions src/NanoParticleTools/optimization/scipy_optimize.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
from collections.abc import Callable


def get_bounds(n_constraints: int, n_elements: int) -> Bounds:
def get_bounds(n_constraints: int, n_elements: int, **kwargs) -> Bounds:
r"""
Get the Bounds which are utilized by scipy minimize.

Expand All @@ -34,7 +34,8 @@ def get_bounds(n_constraints: int, n_elements: int) -> Bounds:
(np.zeros(num_dopant_nodes), np.zeros(n_constraints)))
max_bounds = np.concatenate(
(np.ones(num_dopant_nodes), np.ones(n_constraints)))
bounds = Bounds(min_bounds, max_bounds)
min_bounds[-1] = 1
bounds = Bounds(min_bounds, max_bounds, **kwargs)
return bounds


Expand Down
19 changes: 18 additions & 1 deletion src/NanoParticleTools/species_data/species.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,14 @@

# The naming convention should always start with an X, since the symbol
# cannot start with an existing element's symbol
LEGACY_SURFACE_NAMES = {
'Na': 'Surface',
'Al': 'Surface3',
'Si': 'Surface4',
'P': 'Surface5',
'Mg': 'Surface6',
}

SURFACE_DOPANT_SYMBOLS_TO_NAMES = {
'Xsurfaceone': 'Surface',
'Xsurfacethree': 'Surface3',
Expand Down Expand Up @@ -117,7 +125,16 @@
def __init__(self,
symbol: str,
molar_concentration: float,
n_levels: int | None = None):
n_levels: int | None = None,
legacy_calc: bool = False):
self.legacy_calc = legacy_calc

if self.legacy_calc:
# If this is an older (legacy) calc, we need to convert the hacked
# surface species to the current.
if symbol in self.LEGACY_SURFACE_NAMES:
symbol = self.LEGACY_SURFACE_NAMES[symbol]

Check warning on line 136 in src/NanoParticleTools/species_data/species.py

View check run for this annotation

Codecov / codecov/patch

src/NanoParticleTools/species_data/species.py#L135-L136

Added lines #L135 - L136 were not covered by tests

if symbol in self.SURFACE_DOPANT_NAMES_TO_SYMBOLS:
symbol = self.SURFACE_DOPANT_NAMES_TO_SYMBOLS[symbol]
self.symbol = symbol
Expand Down
192 changes: 92 additions & 100 deletions src/NanoParticleTools/util/visualization.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,125 +16,117 @@
}


def plot_nanoparticle_from_arrays(radii: np.array,
concentrations: np.array,
dpi=150,
as_np_array=False,
elements=['Yb', 'Er', 'Nd']):
def plot_nanoparticle(radii: np.ndarray | list[NanoParticleConstraint],
concentrations: np.array = None,
dopant_specifications: list[tuple] = None,
dpi=150,
as_np_array=False,
elements=['Yb', 'Er', 'Nd'],
ax: plt.Axes = None,
emissions: float = None):
if 'Y' not in elements:
# Add Y, the host element
elements = elements + ['Y']

# Fill in the concentrations with Y
concentrations_with_y = np.concatenate(
(concentrations, 1 - concentrations.sum(axis=1, keepdims=True)),
axis=1)

if isinstance(radii[0], NanoParticleConstraint):
# Convert this to an array
radii = np.array([0] + [c.radius for c in radii])
if not isinstance(radii, np.ndarray):
# If it is a list, it is already in the format we require
raise TypeError(

Check warning on line 36 in src/NanoParticleTools/util/visualization.py

View check run for this annotation

Codecov / codecov/patch

src/NanoParticleTools/util/visualization.py#L36

Added line #L36 was not covered by tests
'radii should be an array of radii or list of contraints')

if concentrations is None and dopant_specifications is None:
raise RuntimeError(

Check warning on line 40 in src/NanoParticleTools/util/visualization.py

View check run for this annotation

Codecov / codecov/patch

src/NanoParticleTools/util/visualization.py#L40

Added line #L40 was not covered by tests
'Must specify one of concentrations or dopant specifications')
elif dopant_specifications is not None:
# convert this to an array
n_layers = len(radii) - 1
dopant_dict = [{key: 0 for key in elements} for _ in range(n_layers)]
for dopant in dopant_specifications:
dopant_dict[dopant[0]][dopant[2]] = dopant[1]

# Fill in the rest with 'Y'
for layer in dopant_dict:
layer['Y'] = 1 - sum(layer.values())

vals = [[layer[el] for el in elements] for layer in dopant_dict]
concentrations = np.array(vals)
elif concentrations is not None:
# Add Y into the list
if len(elements) != concentrations.shape[1]:
concentrations = np.concatenate(
(concentrations,
1 - concentrations.sum(axis=1, keepdims=True)),
axis=1)

concentrations = np.clip(concentrations, 0, 1)
colors = [
DEFAULT_COLOR_MAP[el]
if el in DEFAULT_COLOR_MAP else DEFAULT_COLOR_MAP['Other']
for el in elements
]
# cmap = plt.colormaps["tab10"]
# colors = cmap(np.arange(4))
# # colors[:3] = colors[1:]
# colors[-1] = [1, 1, 1, 1]

fig = plt.figure(figsize=(5, 5), dpi=dpi)
ax = fig.subplots()

for i in range(concentrations.shape[0], 0, -1):
ax.pie(concentrations_with_y[i - 1],
radius=radii[i] / radii[-1],
colors=colors,
wedgeprops=dict(edgecolor='k', linewidth=0.25),
startangle=90)
ax.legend(elements, loc='upper left', bbox_to_anchor=(0.84, 0.95))
plt.tight_layout()
if as_np_array:
# If we haven't already shown or saved the plot, then we need to
# draw the figure first.
fig.canvas.draw()

# Now we can save it to a numpy array.
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))

# Close the figure to remove it from the buffer
plt.close(fig)
return data
if ax is None:
# make a new axis
fig = plt.figure(figsize=(5, 5), dpi=dpi)
ax = fig.subplots()

for i in range(concentrations.shape[0], 0, -1):
ax.pie(concentrations[i - 1],
radius=radii[i] / radii[-1],
colors=colors,
wedgeprops=dict(edgecolor='w', linewidth=0.25),
startangle=90)
ax.legend(elements, loc='upper left', bbox_to_anchor=(0.84, 0.95))
if emissions:
plt.text(0.1,

Check warning on line 83 in src/NanoParticleTools/util/visualization.py

View check run for this annotation

Codecov / codecov/patch

src/NanoParticleTools/util/visualization.py#L83

Added line #L83 was not covered by tests
0.95,
f'UV Intensity={np.power(10, -emissions)-100:.2f}',
fontsize=20,
transform=plt.gca().transAxes)
plt.tight_layout()
if as_np_array:
# If we haven't already shown or saved the plot, then we need to
# draw the figure first.
fig.canvas.draw()

# Now we can save it to a numpy array.
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))

# Close the figure to remove it from the buffer
plt.close(fig)
return data
else:
return fig
else:
return fig


def plot_nanoparticle(constraints,
dopant_specifications,
dpi=150,
as_np_array=False,
elements=['Yb', 'Er', 'Nd']):
if 'Y' not in elements:
elements = elements + ['Y']

n_layers = len(constraints)
radii = [0] + [constraint.radius for constraint in constraints]
dopant_dict = [{key: 0 for key in elements} for _ in range(n_layers)]
for dopant in dopant_specifications:
dopant_dict[dopant[0]][dopant[2]] = dopant[1]

# Fill in the rest with 'Y'
for layer in dopant_dict:
layer['Y'] = 1 - sum(layer.values())

vals = [[layer[el] for el in elements] for layer in dopant_dict]

return plot_nanoparticle_from_arrays(np.array(radii),
np.array(vals),
dpi=dpi,
as_np_array=as_np_array,
elements=elements)


def plot_nanoparticle_on_ax(ax,
constraints,
dopant_specifications,
elements=['Yb', 'Er', 'Nd']):
if 'Y' not in elements:
elements = ['Y'] + elements

n_layers = len(constraints)
radii = [constraint.radius for constraint in constraints]
dopant_dict = [{key: 0 for key in elements} for _ in range(n_layers)]
for dopant in dopant_specifications:
dopant_dict[dopant[0]][dopant[2]] = dopant[1]
# Fill in the rest with 'Y'
for layer in dopant_dict:
layer['Y'] = np.round(1 - sum(layer.values()), 3)

vals = [[layer[el] for el in elements] for layer in dopant_dict]
cmap = plt.colormaps["tab10"]
colors = cmap(np.arange(4) * 4)
colors[0] = [1, 1, 1, 1]

for i in list(range(n_layers - 1, -1, -1)):
# print(vals[i])
ax.pie(vals[i],
radius=radii[i] / radii[-1],
colors=colors,
wedgeprops=dict(edgecolor='k'),
startangle=90)
ax.legend(elements, loc='upper left', bbox_to_anchor=(1, 1))
for i in range(concentrations.shape[0], 0, -1):
ax.pie(concentrations[i - 1],
radius=radii[i] / radii[-1],
colors=colors,
wedgeprops=dict(edgecolor='w', linewidth=0.25),
startangle=90)
ax.legend(elements, loc='upper left', bbox_to_anchor=(0.84, 0.95))
if emissions:
plt.text(0.1,

Check warning on line 112 in src/NanoParticleTools/util/visualization.py

View check run for this annotation

Codecov / codecov/patch

src/NanoParticleTools/util/visualization.py#L112

Added line #L112 was not covered by tests
0.95,
f'UV Intensity={np.power(10, -emissions)-100:.2f}',
fontsize=20,
transform=plt.gca().transAxes)


def update(data, ax):
constraints, dopants = data
ax.clear()
plot_nanoparticle_on_ax(ax, constraints, dopants)
plot_nanoparticle(ax=ax, **data)


def make_animation(frames: List[Tuple[NanoParticleConstraint, Tuple]],
name: str = 'animation.mp4',
fps: int = 30) -> None:
fps: int = 30,
dpi: int = 300) -> None:

fig = plt.figure(dpi=150)
fig = plt.figure(dpi=dpi)
ax = fig.subplots()
anim = animation.FuncAnimation(fig, partial(update, ax=ax), frames=frames)
anim.save(name, fps=fps)
Expand Down
Loading