Skip to content
Dino Sejdinovic edited this page Apr 5, 2016 · 11 revisions

##2015

Date Presenter Topic Materials
Fri, 04/12/2015, 10am, OCGF seminar room Krikamol Muandet Towards a Learning Theory of Cause-Effect Inference arxiv
Tue, 01/12/2015, 10am, OCGF seminar room Krikamol Muandet Kernel Mean Shrinkage Estimators (and friends) arxiv
23/11/2015 Xiaoyu Lu Feature Hashing for Large Scale Multitask Learning pdf
16/11/2015 Dino Sejdinovic Spherical Random Features for Polynomial Kernels pdf
09/11/2015 no meeting
02/11/2015 Heiko Strathmann Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families paper, blogpost, Og1, Og2
26/10/2015 Seth Flaxman Bayesian Kernel Models main focus: paper 1 supplementary paper 2
19/10/2015 3.30pm Tamara Fernandez-Aguilar Posterior Consistency in Nonparametric Regression Problems under Gaussian Process Priors paper
12/10/2015 Qinyi Zhang Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations paper
05/10/2015 3.30pm Jovana Mitrovic Two-stage Sampled Learning Theory on Distributions [DistReg] (http://arxiv.org/abs/1402.1754)
28/09/2015 no meeting
21/09/2015 2pm Martin Strazar Learning the kernel matrix via predictive low-rank approximations
14/09/2015 Gianni Franchi Invariant Scattering Convolution Networks paper 1, paper 2
07/09/2015 Zhu Li On the Error of Random Fourier Features paper
31/08/2015 no meeting
24/08/2015 Dan Fess Determinantal Point Processes paper
17/08/2015 Zoltan Szabo Sketching for least squares problems and kernel ridge regression paper1, paper2
10/08/2015 no meeting
03/08/2015 Francois-Xavier Briol On the Equivalence between Quadrature Rules and Random Features Bach2015
27/07/2015 no meeting
20/07/2015 Dino Sejdinovic Random Features + Fastfood Rahimi&Recht, FastFood
13/07/2015 Thibaut Lienart Kernel Embeddings of Conditional Distributions SigProcMag paper
06/07/2015 Dino Sejdinovic Basic RKHS theory notes, slides 1, slides 2
Clone this wiki locally