Skip to content
qinyizhang edited this page Dec 1, 2017 · 11 revisions

MT 2017

Date Presenter Topic Materials
02/11/2017 Leon (Almost) No Label No Cry (NIPS 2014) paper
16/11/2017 Michael Kernel Feature Selection via Conditional Covariance Minimization (NIPS 2017) paper
23/11/2017 Dino On kernel methods for covariates that are rankings paper

TT 2017

Date Presenter Topic Materials
23/06/2017 Hyunjik Asynchronous Distributed Variational Gaussian Process for Regression (ICML 2017) paper
Jean-Francois Non-Stationary Spectral Kernels paper
21/07/2017 Kurt Cutajar (EURECOM) Bayesian Inference of Log Determinants (UAI 2017) paper
Random Feature Expansions for Deep Gaussian Processes (ICML 2017) paper
18/08/2017 Dino Nyström Method with Kernel K-means++ Samples as Landmarks paper
15/09/2017 Leon Estimating Labels from Label Proportions paper
22/09/2017 Zhu Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees paper
29/09/2017 Tim Variational Fourier Features for Gaussian Processes paper

HT 2017

Date Presenter Topic Materials
19/01/2017 Leon End-to-End Kernel Learning with Supervised Convolutional Kernel Networks Paper
26/01/2017 Qinyi Joint Quantile Regression in Vector-Valued RKHSs Paper
02/02/2017 Seth Kernel Mean Embedding of Distributions: A Review and Beyond Paper
09/02/2017 Thibaut Step Size Adaptation in Reproducing Kernel Hilbert Space Paper
16/02/2017 Tamara The Randomized Causation Coefficient Paper
23/02/2017 Dino The Kendall and Mallows Kernels for Permutations Paper
02/03/2017 Hyunjik Statistical Model Criticism using Kernel Two Sample Tests Paper
09/03/2017 No Meeting
16/03/2017 Jovana Learning with Hierarchical Gaussian Kernels Paper

MT 2016

Date Presenter Topic Materials
15/09/2016 Organisational Meeting
22/09/2016 Ch. 1 of Wahba 1990 book
29/09/2016 No Meeting
06/10/2016 see Arthur Gretton's talk at the Workshop on Stein's method (no separate meeting) Paper
13/10/2016 Tamara Bayesian Nonparametric Kernel Learning Paper
20/10/2016 Hyunjik Variational Learning of Inducing Variables in Sparse Gaussian Processes Paper
27/10/2016 Seth Scalable spatiotemporal point process modeling with Gaussian Processes Paper
03/11/2016 No Meeting
10/11/2016 Qinyi Preconditioning Kernel Matrices Paper
17/11/2016 Leon Interpretable Distribution Features with Maximum Testing Power Paper
24/11/2016 Jovana Kernel Bayesian Inference with Posterior Regularization Paper
01/12/2016 No Meeting

TT 2016

Date Presenter Topic Materials
04/04/2016 Roman Garnett
(Washington University in St. Louis)
Active Learning of Hyperparameters for Gaussian Processes
11/04/2016 Paul Rubenstein
(University of Cambridge / MPI Tubingen)
A Kernel Test for Three-Variable Interactions with Random Processes arXiv
25/04/2016, LG.03 Ingmar Schuster
(Universite Paris-Dauphine)
Kernel Sequential Monte Carlo arXiv
Tue, 03/05/2016, LG.03, 3pm Bharath Sriperumbudur
(Pennsylvania State University)
Minimax Estimation of Kernel Mean Embeddings arXiv
23/05/2016, 3.30pm Thibaut Lienart
(internal)
Training generative NN via MMD opt arXiv
23/05/2016, 4pm Tamara Fernandez
(internal)
RKHS of Gaussian priors arXiv
Wed, 15/06/2016, 3.30pm, LG.04 Qinyi Zhang
(internal)
A Kernel Test of Goodness of Fit arXiv
27/06/2016 Xiaoyu Lu
(internal)
Risk-Sensitive Model Predictive Control with Gaussian Process Models paper

HT 2016

Date Presenter Topic Materials
18/01/2016 Owen Thomas Scalable Kernel Methods via Doubly Stochastic Gradients http://arxiv.org/pdf/1407.5599.pdf
25/01/2016 Zhu Li Sharp analysis of low-rank kernel matrix approximations http://arxiv.org/abs/1208.2015
01/02/2016 F-X Briol Probabilistic Integration http://arxiv.org/abs/1512.00933
08/02/2016 Jon Cockayne Bayesian Inverse Problems in PDEs with Probabilistic Models for Numerical Error accompanying slides
15/02/2016 Arnold Salas epsilon-Gaussian process regression accompanying slides
22/02/2016 Jovana Mitrovic Deep Kernel Learning [paper] (http://arxiv.org/pdf/1511.02222v1.pdf)
29/02/2016 Qinyi Zhang Nyström Computational Regularization http://arxiv.org/abs/1507.04717
07/03/2016 3.30pm Hyunjik Kim Structure Discovery in Nonparametric Regression through Compositional Kernel Search http://arxiv.org/pdf/1302.4922.pdf
07/03/2016 4.30pm Hiroaki Imai Density Estimation in Infinite Dimensional Exponential Families paper

2015

Date Presenter Topic Materials
Fri, 04/12/2015, 10am, OCGF seminar room Krikamol Muandet Towards a Learning Theory of Cause-Effect Inference arxiv
Tue, 01/12/2015, 10am, OCGF seminar room Krikamol Muandet Kernel Mean Shrinkage Estimators (and friends) arxiv
23/11/2015 Xiaoyu Lu Feature Hashing for Large Scale Multitask Learning pdf
16/11/2015 Dino Sejdinovic Spherical Random Features for Polynomial Kernels pdf
09/11/2015 no meeting
02/11/2015 Heiko Strathmann Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families paper, blogpost, Og1, Og2
26/10/2015 Seth Flaxman Bayesian Kernel Models main focus: paper 1 supplementary paper 2
19/10/2015 3.30pm Tamara Fernandez-Aguilar Posterior Consistency in Nonparametric Regression Problems under Gaussian Process Priors paper
12/10/2015 Qinyi Zhang Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations paper
05/10/2015 3.30pm Jovana Mitrovic Two-stage Sampled Learning Theory on Distributions [DistReg] (http://arxiv.org/abs/1402.1754)
28/09/2015 no meeting
21/09/2015 2pm Martin Strazar Learning the kernel matrix via predictive low-rank approximations
14/09/2015 Gianni Franchi Invariant Scattering Convolution Networks paper 1, paper 2
07/09/2015 Zhu Li On the Error of Random Fourier Features paper
31/08/2015 no meeting
24/08/2015 Dan Fess Determinantal Point Processes paper
17/08/2015 Zoltan Szabo Sketching for least squares problems and kernel ridge regression paper1, paper2
10/08/2015 no meeting
03/08/2015 Francois-Xavier Briol On the Equivalence between Quadrature Rules and Random Features Bach2015
27/07/2015 no meeting
20/07/2015 Dino Sejdinovic Random Features + Fastfood Rahimi&Recht, FastFood
13/07/2015 Thibaut Lienart Kernel Embeddings of Conditional Distributions SigProcMag paper
06/07/2015 Dino Sejdinovic Basic RKHS theory notes, slides 1, slides 2
Clone this wiki locally