Skip to content

MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

License

Notifications You must be signed in to change notification settings

BeeBreeze/datasketch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

datasketch: Big Data Looks Small

https://travis-ci.org/ekzhu/datasketch.svg?branch=master

datasketch gives you probabilistic data structures that can process and search very large amount of data super fast, with little loss of accuracy.

This package contains the following data sketches:

Data Sketch Usage
MinHash estimate Jaccard similarity and cardinality
Weighted MinHash estimate weighted Jaccard similarity
HyperLogLog estimate cardinality
HyperLogLog++ estimate cardinality

The following indexes for data sketches are provided to support sub-linear query time:

Index For Data Sketch Supported Query Type
MinHash LSH MinHash, Weighted MinHash Jaccard Threshold
MinHash LSH Forest MinHash, Weighted MinHash Jaccard Top-K
MinHash LSH Ensemble MinHash Containment Threshold

datasketch must be used with Python 2.7 or above and NumPy 1.11 or above. Scipy is optional, but with it the LSH initialization can be much faster.

Note that MinHash LSH and MinHash LSH Ensemble also support Redis and Cassandra storage layer (see MinHash LSH at Scale).

Install

To install datasketch using pip:

pip install datasketch

This will also install NumPy as dependency.

To install with Redis dependency:

pip install datasketch[redis]

To install with Cassandra dependency:

pip install datasketch[cassandra]

To install with Scipy for faster MinHashLSH initialization:

pip install datasketch[scipy]

About

MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 97.5%
  • Makefile 2.1%
  • Shell 0.4%