forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[V1] Adding min tokens/repetition/presence/frequence penalties to V1 …
…sampler (vllm-project#10681) Signed-off-by: Sourashis Roy <[email protected]> Signed-off-by: Woosuk Kwon <[email protected]> Co-authored-by: Woosuk Kwon <[email protected]>
- Loading branch information
Showing
11 changed files
with
879 additions
and
49 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,331 @@ | ||
from typing import List, Set, Tuple | ||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
|
||
from vllm.utils import make_tensor_with_pad | ||
from vllm.v1.sample.metadata import SamplingMetadata | ||
from vllm.v1.sample.sampler import Sampler | ||
|
||
VOCAB_SIZE = 1024 | ||
NUM_OUTPUT_TOKENS = 20 | ||
CUDA_DEVICES = [ | ||
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2) | ||
] | ||
MAX_NUM_PROMPT_TOKENS = 64 | ||
|
||
|
||
def _create_fake_logits(batch_size: int, vocab_size: int) -> torch.Tensor: | ||
fake_logits = torch.full((batch_size, vocab_size), 1e-2, dtype=torch.float) | ||
return fake_logits | ||
|
||
|
||
def _create_penalty_tensor(batch_size: int, penalty_value: float, | ||
device: torch.device) -> torch.Tensor: | ||
return torch.full((batch_size, ), | ||
fill_value=penalty_value, | ||
dtype=torch.float, | ||
device=device) | ||
|
||
|
||
def _create_prompt_tokens_tensor( | ||
prompt_token_ids: List[List[int]], | ||
vocab_size: int, | ||
device: torch.device, | ||
) -> torch.Tensor: | ||
return make_tensor_with_pad( | ||
prompt_token_ids, | ||
pad=vocab_size, | ||
device=device, | ||
dtype=torch.int64, | ||
pin_memory=False, | ||
) | ||
|
||
|
||
def _create_default_sampling_metadata( | ||
num_output_tokens: int, | ||
batch_size: int, | ||
vocab_size: int, | ||
device: torch.device, | ||
) -> SamplingMetadata: | ||
output_token_ids: List[List[int]] = [] | ||
prompt_token_ids: List[List[int]] = [] | ||
for _ in range(batch_size): | ||
output_token_ids.append( | ||
np.random.randint(0, vocab_size, size=num_output_tokens).tolist()) | ||
prompt_token_ids.append( | ||
np.random.randint(0, | ||
vocab_size, | ||
size=np.random.randint( | ||
1, MAX_NUM_PROMPT_TOKENS)).tolist()) | ||
fake_sampling_metadata = SamplingMetadata( | ||
temperature=torch.full((batch_size, ), 0.0), | ||
all_greedy=True, | ||
all_random=False, | ||
top_p=torch.empty(batch_size, ), | ||
top_k=torch.empty(batch_size, ), | ||
no_top_p=True, | ||
no_top_k=True, | ||
generators={}, | ||
max_num_logprobs=VOCAB_SIZE, | ||
prompt_token_ids=_create_prompt_tokens_tensor(prompt_token_ids, | ||
vocab_size, device), | ||
output_token_ids=output_token_ids, | ||
frequency_penalties=_create_penalty_tensor(batch_size, 0.0, device), | ||
presence_penalties=_create_penalty_tensor(batch_size, 0.0, device), | ||
repetition_penalties=_create_penalty_tensor(batch_size, 1.0, device), | ||
no_penalties=True, | ||
min_tokens=[], | ||
stop_token_ids=[], | ||
) | ||
return fake_sampling_metadata | ||
|
||
|
||
def _generate_min_token_penalties_and_stop_tokens( | ||
num_output_tokens: int, batch_size: int, vocab_size: int, | ||
batch_indices_for_min_token_penalty: List[int] | ||
) -> Tuple[List[int], List[Set[int]]]: | ||
""" | ||
Generates and returns a list of minimum token penalties (`min_tokens`) | ||
and a corresponding list of stop token IDs (`stop_token_ids`) for each | ||
batch. | ||
If a batch index is included in `batch_indices_for_min_token_penalty`, | ||
a higher `min_tokens` value is assigned (within a randomized range), | ||
and a random set of stop token IDs is created. Otherwise, a lower | ||
`min_tokens` value is assigned, and the stop token IDs set is empty. | ||
""" | ||
stop_token_ids: List[Set[int]] = [] | ||
min_tokens: List[int] = [] | ||
for index in range(batch_size): | ||
if index in batch_indices_for_min_token_penalty: | ||
min_tokens.append( | ||
np.random.randint(num_output_tokens + 1, | ||
2 * num_output_tokens)) | ||
stop_token_ids.append( | ||
set( | ||
np.random.randint(0, vocab_size - 1) | ||
for _ in range(np.random.randint(0, vocab_size)))) | ||
|
||
else: | ||
min_tokens.append(np.random.randint(0, num_output_tokens)) | ||
stop_token_ids.append(set()) | ||
return (min_tokens, stop_token_ids) | ||
|
||
|
||
def _create_weighted_output_token_list( | ||
batch_size: int, | ||
vocab_size: int) -> Tuple[List[List[int]], List[List[int]]]: | ||
""" | ||
Creates an output token list where each token occurs a distinct | ||
number of times. | ||
For each batch, a random subset of token IDs is selected from the | ||
vocabulary. The selected tokens are then added to the output token | ||
list, each with a different frequency. | ||
Returns: | ||
Tuple[List[List[int]], List[List[int]]]: | ||
- The first element is the output token list, where each sublist | ||
corresponds to a batch and contains tokens with weighted | ||
frequencies. | ||
- The second element is a list of distinct token IDs for each | ||
batch, ordered by their frequency in the corresponding output | ||
list. | ||
""" | ||
output_token_ids: List[List[int]] = [] | ||
sorted_token_ids_in_output: List[List[int]] = [] | ||
for _ in range(batch_size): | ||
distinct_token_ids = np.random.choice(vocab_size, | ||
size=np.random.randint(1, 10), | ||
replace=False).tolist() | ||
sorted_token_ids_in_output.append(distinct_token_ids) | ||
output_token_ids_for_batch = [] | ||
for index, token_id in enumerate(distinct_token_ids): | ||
output_token_ids_for_batch.extend( | ||
[token_id for _ in range(index + 1)]) | ||
output_token_ids.append(output_token_ids_for_batch) | ||
return (output_token_ids, sorted_token_ids_in_output) | ||
|
||
|
||
@pytest.mark.parametrize("device", CUDA_DEVICES) | ||
@pytest.mark.parametrize("batch_size", [1, 2, 32]) | ||
def test_sampler_min_tokens_penalty(device: str, batch_size: int): | ||
""" | ||
Tests that if the number of output tokens is less than | ||
SamplingParams.min_tokens then we will set the logits for | ||
the stop token ids to -inf. | ||
""" | ||
torch.set_default_device(device) | ||
fake_logits = _create_fake_logits(batch_size, VOCAB_SIZE) | ||
sampling_metadata = _create_default_sampling_metadata( | ||
NUM_OUTPUT_TOKENS, batch_size, VOCAB_SIZE, torch.device(device)) | ||
batch_indices_for_min_token_penalty = np.random.randint( | ||
0, batch_size - 1, size=np.random.randint(0, batch_size)).tolist() | ||
min_tokens, stop_token_ids = _generate_min_token_penalties_and_stop_tokens( | ||
NUM_OUTPUT_TOKENS, batch_size, VOCAB_SIZE, | ||
batch_indices_for_min_token_penalty) | ||
sampling_metadata.min_tokens = min_tokens | ||
sampling_metadata.stop_token_ids = stop_token_ids | ||
sampler = Sampler() | ||
sampler_output = sampler(fake_logits, sampling_metadata) | ||
for batch_idx in range(batch_size): | ||
for vocab in range(VOCAB_SIZE): | ||
# Verify that the logprobs for stop token ids is set | ||
# to -inf. | ||
logprob_index = torch.where( | ||
sampler_output.logprob_token_ids[batch_idx] == | ||
vocab)[0].item() | ||
if vocab in stop_token_ids[batch_idx]: | ||
assert sampler_output.logprobs[batch_idx][ | ||
logprob_index] == -float("inf") | ||
else: | ||
assert sampler_output.logprobs[batch_idx][ | ||
logprob_index] != -float("inf") | ||
|
||
|
||
@pytest.mark.parametrize("device", CUDA_DEVICES) | ||
@pytest.mark.parametrize("batch_size", [1, 2, 32]) | ||
@pytest.mark.parametrize("presence_penalty", [-2.0, 2.0]) | ||
def test_sampler_presence_penalty(device: str, batch_size: int, | ||
presence_penalty: float): | ||
""" | ||
Test to verify that if presence penalty is enabled then tokens | ||
are penalized as per their presence in the existing output. | ||
""" | ||
torch.set_default_device(device) | ||
# Create fake logits where each token is assigned the same | ||
# logit value. | ||
fake_logits = _create_fake_logits(batch_size, VOCAB_SIZE) | ||
sampling_metadata = _create_default_sampling_metadata( | ||
NUM_OUTPUT_TOKENS, batch_size, VOCAB_SIZE, torch.device(device)) | ||
output_token_ids = sampling_metadata.output_token_ids | ||
sampling_metadata.presence_penalties = _create_penalty_tensor( | ||
batch_size, presence_penalty, torch.device(device)) | ||
sampling_metadata.no_penalties = False | ||
sampler = Sampler() | ||
sampler_output = sampler(fake_logits, sampling_metadata) | ||
for batch_idx in range(batch_size): | ||
# The logprobs in the SamplerOutput are arranged in descending order. | ||
# Since all tokens initially have the same logprobs, the non-penalized | ||
# tokens will appear at the beginning, while the penalized tokens | ||
# will appear at the end of the list. | ||
penalized_token_id = sampler_output.logprob_token_ids[batch_idx][ | ||
VOCAB_SIZE - 1] | ||
penalized_log_prod = sampler_output.logprobs[batch_idx][VOCAB_SIZE - 1] | ||
non_penalized_token_id = sampler_output.logprob_token_ids[batch_idx][0] | ||
non_penalized_log_prod = sampler_output.logprobs[batch_idx][0] | ||
assert non_penalized_log_prod > penalized_log_prod | ||
if presence_penalty > 0: | ||
# If `presence_penalty` is set to a value greater than 0, it | ||
# indicates a preference for new tokens over those already | ||
# present in the output. | ||
# Verify that the penalized token ID exists in the output, while the | ||
# non-penalized token ID does not. | ||
assert penalized_token_id in output_token_ids[batch_idx] | ||
assert non_penalized_token_id not in output_token_ids[batch_idx] | ||
elif presence_penalty < 0: | ||
# If `presence_penalty` is set to a value less than 0, it indicates | ||
# a preference for existing tokens over new ones. Verify that the | ||
# non-penalized token ID exists in the output, while the penalized | ||
# token ID does not. | ||
assert non_penalized_token_id in output_token_ids[batch_idx] | ||
assert penalized_token_id not in output_token_ids[batch_idx] | ||
|
||
|
||
@pytest.mark.parametrize("device", CUDA_DEVICES) | ||
@pytest.mark.parametrize("batch_size", [1, 2, 32]) | ||
@pytest.mark.parametrize("frequency_penalty", [-2.0, 2.0]) | ||
def test_sampler_frequency_penalty(device: str, batch_size: int, | ||
frequency_penalty: float): | ||
""" | ||
Test to verify that if frequency penalty is enabled then tokens are | ||
penalized as per their frequency of occurrence. | ||
""" | ||
torch.set_default_device(device) | ||
# Create fake logits where each token is assigned the same | ||
# logit value. | ||
fake_logits = _create_fake_logits(batch_size, VOCAB_SIZE) | ||
sampling_metadata = _create_default_sampling_metadata( | ||
NUM_OUTPUT_TOKENS, batch_size, VOCAB_SIZE, torch.device(device)) | ||
sampling_metadata.frequency_penalties = _create_penalty_tensor( | ||
batch_size, frequency_penalty, torch.device(device)) | ||
output_token_ids, sorted_token_ids_in_output = \ | ||
_create_weighted_output_token_list(batch_size, VOCAB_SIZE) | ||
sampling_metadata.output_token_ids = output_token_ids | ||
sampling_metadata.no_penalties = False | ||
sampler = Sampler() | ||
sampler_output = sampler(fake_logits, sampling_metadata) | ||
for batch_idx in range(batch_size): | ||
logprobs_token_ids = sampler_output.logprob_token_ids[batch_idx] | ||
non_penalized_token_id = logprobs_token_ids[0] | ||
penalized_token_id = logprobs_token_ids[VOCAB_SIZE - 1] | ||
distinct_sorted_token_ids_in_output = \ | ||
sorted_token_ids_in_output[batch_idx] | ||
most_frequent_token_id = distinct_sorted_token_ids_in_output[ | ||
len(distinct_sorted_token_ids_in_output) - 1] | ||
if frequency_penalty > 0: | ||
# If `frequency_penalty` is set to > 0, it indicates | ||
# a preference for new tokens over existing ones. Verify that the | ||
# non-penalized token ID is not present in the output, while the | ||
# most penalized token is the one that occurs most frequently in | ||
# the output. | ||
assert non_penalized_token_id \ | ||
not in distinct_sorted_token_ids_in_output | ||
assert penalized_token_id == most_frequent_token_id | ||
elif frequency_penalty < 0: | ||
# If `frequency_penalty` is set to < 0, it indicates | ||
# a preference for existing tokens over new ones. Verify that the | ||
# non-penalized token ID is the one that occurs most frequently | ||
# in the output, while the penalized token ID is one that has not | ||
# yet appeared. | ||
assert non_penalized_token_id == most_frequent_token_id | ||
assert penalized_token_id \ | ||
not in distinct_sorted_token_ids_in_output | ||
|
||
|
||
@pytest.mark.parametrize("device", CUDA_DEVICES) | ||
@pytest.mark.parametrize("batch_size", [1, 2, 32]) | ||
@pytest.mark.parametrize("repetition_penalty", [0.1, 1.9]) | ||
def test_sampler_repetition_penalty(device: str, batch_size: int, | ||
repetition_penalty: float): | ||
""" | ||
Test to verify that when the repetition penalty is enabled, tokens | ||
are penalized based on their presence in the prompt or the existing | ||
output. | ||
""" | ||
torch.set_default_device(device) | ||
# Create fake logits where each token is assigned the same | ||
# logit value. | ||
fake_logits = _create_fake_logits(batch_size, VOCAB_SIZE) | ||
sampling_metadata = _create_default_sampling_metadata( | ||
NUM_OUTPUT_TOKENS, batch_size, VOCAB_SIZE, torch.device(device)) | ||
sampling_metadata.repetition_penalties = _create_penalty_tensor( | ||
batch_size, repetition_penalty, torch.device(device)) | ||
sampling_metadata.no_penalties = False | ||
sampler = Sampler() | ||
sampler_output = sampler(fake_logits, sampling_metadata) | ||
for batch_idx in range(batch_size): | ||
logprobs_token_ids = sampler_output.logprob_token_ids[batch_idx] | ||
non_penalized_token_id = logprobs_token_ids[0] | ||
penalized_token_id = logprobs_token_ids[VOCAB_SIZE - 1] | ||
prompt_tokens = sampling_metadata.prompt_token_ids[ | ||
batch_idx][:].tolist() | ||
output_tokens = sampling_metadata.output_token_ids[batch_idx] | ||
if repetition_penalty > 1.0: | ||
# If `repetition_penalty` > 1.0, verify that the non-penalized | ||
# token ID has not been seen before, while the penalized token ID | ||
# exists either in the prompt or the output. | ||
assert (non_penalized_token_id not in prompt_tokens and \ | ||
non_penalized_token_id not in output_tokens) | ||
assert (penalized_token_id in prompt_tokens or \ | ||
penalized_token_id in output_tokens) | ||
elif repetition_penalty < 1.0: | ||
# If `repetition_penalty` < 1.0, verify that the penalized | ||
# token ID has not been seen before, while the non-penalized | ||
# token ID exists either in the prompt or the output. | ||
assert (penalized_token_id not in prompt_tokens and \ | ||
penalized_token_id not in output_tokens) | ||
assert (non_penalized_token_id in prompt_tokens or \ | ||
non_penalized_token_id in output_tokens) |
Empty file.
Oops, something went wrong.