Skip to content

Commit

Permalink
[V1] Update interface for idefics3 (vllm-project#10680)
Browse files Browse the repository at this point in the history
Signed-off-by: Roger Wang <[email protected]>
  • Loading branch information
ywang96 authored and BKitor committed Dec 30, 2024
1 parent 7e2e400 commit 711f4de
Showing 1 changed file with 46 additions and 27 deletions.
73 changes: 46 additions & 27 deletions vllm/model_executor/models/idefics3.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.multimodal.image import cached_get_image_processor
from vllm.multimodal.inputs import NestedTensors
from vllm.sequence import IntermediateTensors, SequenceData
from vllm.transformers_utils.processor import cached_get_processor
from vllm.utils import is_list_of
Expand Down Expand Up @@ -597,33 +598,21 @@ def _process_image_input(self, image_input: ImageInputs) -> torch.Tensor:
image_features = self._process_image_pixels(image_input)
return self.connector(image_features)

def get_input_embeddings(
self,
input_ids: torch.Tensor,
) -> torch.Tensor:
return self.text_model.get_input_embeddings(input_ids)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
**kwargs: object,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if intermediate_tensors is not None:
input_ids = None
inputs_embeds = None
else:
# always pass the input via `inputs_embeds`
# to make sure the computation graph is consistent
image_input = self._parse_and_validate_image_input(**kwargs)

if image_input is not None:
vision_embeddings = self._process_image_input(image_input)
inputs_embeds = self.text_model.get_input_embeddings(input_ids)

inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, vision_embeddings,
self.image_token_id)
else:
inputs_embeds = self.text_model.get_input_embeddings(input_ids)
input_ids = None

hidden_states = self.text_model(
input_ids,
Expand Down Expand Up @@ -718,23 +707,53 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
self.logits_processor = LogitsProcessor(config.text_config.vocab_size)
self.sampler = Sampler()

def get_multimodal_embeddings(self, **kwargs) -> Optional[NestedTensors]:
image_input = self.model._parse_and_validate_image_input(**kwargs)
if image_input is None:
return None
vision_embeddings = self.model._process_image_input(image_input)
return vision_embeddings

def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[NestedTensors] = None,
) -> torch.Tensor:
inputs_embeds = self.model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
self.config.image_token_id)
return inputs_embeds

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(
input_ids,
positions,
kv_caches,
attn_metadata,
intermediate_tensors,
**kwargs,
)
if intermediate_tensors is not None:
inputs_embeds = None

# NOTE: In v1, inputs_embeds is always generated at model runner, this
# condition is for v0 compatibility.
elif inputs_embeds is None:
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids,
vision_embeddings)
input_ids = None

hidden_states = self.model.text_model(input_ids,
positions,
kv_caches,
attn_metadata,
intermediate_tensors,
inputs_embeds=inputs_embeds)

return hidden_states

def compute_logits(self, hidden_states: torch.Tensor,
Expand Down

0 comments on commit 711f4de

Please sign in to comment.