Skip to content

Source code of the WWW2021 paper "Unsupervised Semantic Association Learning with Latent Label Inference".

Notifications You must be signed in to change notification settings

BDBC-KG-NLP/WWW2021_USAL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

USAL

This is a pytorch implementation of the WWW 2021 paper "Unsupervised Semantic Association Learning with Latent Label Inference".

Requirements

python3.6.0+

pytorch 1.7.0+

transformers

tensorboard

Usage

Download the data, and change the datapath in the configs file.

To train a new model, run the following command:

python main.py --dataset='config name' --main=wsd.py/qa.py --do_train

Citation

If this work is helpful, please cite as:

@inproceedings{zhang2021unsupervised,
  title={Unsupervised Semantic Association Learning with Latent Label Inference},
  author={Zhang, Yanzhao and Zhang, Richong and Kim, Jaein and Liu, Xudong and Mao, Yongyi},
  booktitle={Proceedings of the Web Conference 2021},
  pages={4010--4019},
  year={2021}
}

License

MIT

About

Source code of the WWW2021 paper "Unsupervised Semantic Association Learning with Latent Label Inference".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages