Skip to content

Commit

Permalink
i18n -- MiD fixes (#1255)
Browse files Browse the repository at this point in the history
* i18n -- MiD fixes

* MiD corrections
  • Loading branch information
mymindstorm authored Aug 15, 2024
1 parent d703ac9 commit 9e996f4
Show file tree
Hide file tree
Showing 5 changed files with 5 additions and 5 deletions.
2 changes: 1 addition & 1 deletion _locales/bg/messages.json
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@
"description": "Manual Entry."
},
"migration_fail": {
"message": ".",
"message": "Import failed. If you are migrating data from Google Authenticator, please re-export your data from Google Authenticator and try again.",
"description": "Import migration data failed."
},
"migration_partly_fail": {
Expand Down
2 changes: 1 addition & 1 deletion _locales/cs/messages.json
Original file line number Diff line number Diff line change
Expand Up @@ -408,7 +408,7 @@
"message": "Záloha"
},
"backup_file_info": {
"message": "Zálohovat data do souboru.https://bitcoin.atomicwallet.io/tx/11992f44eaace1312edb971e4b7f92bbd803abb72109c114a1c769e1a92301cd"
"message": "Zálohovat data do souboru."
},
"password_policy_default_hint": {
"message": "Vaše heslo nesplňuje bezpečnostní požadavky vaší organizace. Pro více informací kontaktujte svého správce."
Expand Down
2 changes: 1 addition & 1 deletion _locales/el/messages.json
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
"description": "QR Error."
},
"errorsecret": {
"message": "Μην έγκυρο μυστικό λογα\npython\n\nimport pandas as pd\n\nimport numpy as np\n\nimport tensorflow as tf\n\nfrom keras. models import Sequential\n\nfrom keras. layers import Dense, Dropout\n\nfrom keras. optimizers import Adam\n\nfrom sklearn. preprocessing import StandardScaler\n\nfrom sklearn. model_selection import train_test_split\n\nfrom sklearn. metrics import accuracy_score, f1_score, roc_auc_score\n\nfrom pandas. plotting import register_matplotlib_converters\n\nregister_matplotlib_converters()\n\n\n\ndef preprocessing(data):\n\n # drop any missing values\n\n data = data. dropna()\n\n\n\n # drop any unnecessary columns\n\n data = data. drop(columns=['date', 'time', 'open', 'high', 'low', 'close', 'volume'])\n\n\n\n # standardize the data\n\n scaler = StandardScaler()\n\n data = pd. DataFrame(scaler. fit_transform(data))\n\n\n\n # split the data into training and testing sets\n\n X_train, X_test, Y_train, Y_test = train_test_split(\n\n data. iloc[:,:-1], data. iloc[:, -1], test_size=0.3, random_state=42)\n\n\n\n return X_train, X_test, Y_train, Y_test\n\n\n\ndef create_model(input_shape):\n\n model = Sequential()\n\n\n\n model. add(Dense(64, input_shape=input_shape, activation='relu'))\n\n model. add(Dropout(0.2))\n\n\n\n model. add(Dense(32, activation='relu'))\n\n model. add(Dropout(0.1))\n\n\n\n model. add(Dense(1, activation='sigmoid'))\n\n model. compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0001), metrics=['accuracy'])\n\n\n\n return model\n\n\n\ndef train_model(X_train, X_test, Y_train, Y_test):\n\n input_shape = (X_train. shape[1],)\n\n model = create_model(input_shape)\n\n\n\n model. fit(X_train, Y_train, epochs=100, batch_size=32, validation_data=(X_test, Y_test), verbose=0)\n\n\n\n Y_pred_test = model. predict(X_test)\n\n Y_pred_test = np. round(Y_pred_test)\n\n\n\n accuracy = accuracy_score(Y_test, Y_pred_test)\n\n f1 = f1_score(Y_test, Y_pred_test)\n\n auc = roc_auc_score(Y_test, Y_pred_test)\n\n\n\n return model, accuracy, f1, auc\n\n\n\ndef evaluate_model(model, X_test, Y_test):\n\n Y_pred_test = model. predict(X_test)\n\n Y_pred_test = np. round(Y_pred_test)\n\n\n\n accuracy = accuracy_score(Y_test, Y_pred_test)\n\n f1 = f1_score(Y_test, Y_pred_test)\n\n auc = roc_auc_score(Y_test, Y_pred_test)\n\n\n\n return accuracy, f1, auc\n\n\n\ndef predict(model, data):\n\n # preprocess the data\n\n data = pd. DataFrame(data, columns=['close', 'returns', 'stdev'])\n\n\n\n data = pd. DataFrame(StandardScaler(). fit_transform(data))\n\n data = data. iloc[-1,:]. values. reshape(1, -1)\n\n\n\n # predict the next day's direction\n\n prediction = model. predict(data)\n\n prediction = np. round(prediction)\n\n\n\n return prediction\n\n\n\nif __name__ == '__main__':\n\n # load and preprocess the data\n\n data = pd. read_csv('data. csv')\n\n X_train, X_test, Y_train, Y_test = preprocessing(data)\n\n\n\n # train the model\n\n model, accuracy, f1, auc = train_model(X_train, X_test, Y_train, Y_test)\n\n\n\n # evaluate the model\n\n accuracy, f1, auc = evaluate_model(model, X_test, Y_test)\n\n\n\n # make a prediction\n\n data = pd. read_csv('today. csv')\n\n prediction = predict(model, data)\n\n\n\n if prediction == 1:\n\n print('Buy')\n\n else:\n\n print('Sell') ριασμού",
"message": "Μην έγκυρο μυστικό λογαριασμού",
"description": "Secret Error."
},
"add_code": {
Expand Down
2 changes: 1 addition & 1 deletion _locales/et/messages.json
Original file line number Diff line number Diff line change
Expand Up @@ -190,7 +190,7 @@
"description": "Capture Failed"
},
"capture_local_file_failed": {
"message": ".",
"message": "Are you trying to scan QR code from a local file? Use Import QR Image Backup instead.",
"description": "Import QR image backup instead of scan local image"
},
"based_on_time": {
Expand Down
2 changes: 1 addition & 1 deletion _locales/id/messages.json
Original file line number Diff line number Diff line change
Expand Up @@ -462,7 +462,7 @@
"message": "Perizinan"
},
"permission_revoke": {
"message": "Cabut; tarik; batal; batalkan"
"message": "Revoke"
},
"permission_show_required_permissions": {
"message": "Menampilkan ijin yang tidak bisa dibatalkan"
Expand Down

0 comments on commit 9e996f4

Please sign in to comment.