This repository corresponds to the article'Siamese Neural Networks for Regression: Similarity-Based Pairing and Uncertainty Quantification'. The project consists of 4 models: Multilayer perceptron model with single input (MLP-FP) and paired input (MLP-deltaFP), Chemformer model[1] , and Siamese model with Chemformer strcuture (Cheformer-snn)
- for exaustive pairs:
python mlp.py -s lipo_all.yml -st 0 -f lipo
- for similarity-based pairs:
python mlp.py -s lipo_top1.yml -st 1 -f lipo
python mlp.py -s lipo_mlp.yml
- for dropout 0.0:
python finetuenRegr_k_fold.py --name lipo --data_path lipo/ --drp 0.0
we need to run dropout = [0.0,0.05,0.1,0.17]
python finetuneRegr_k_fold.py --name lipo --data_path lipo/
-
python confidence_plot.py
-
python dropout_plot.py
-
python plot_n_shot.py
-
python shot_plot.py
[1] Irwin, R., Dimitriadis, S., He, J., Bjerrum, E.J., 2021. Chemformer: A Pre-Trained Transformer for Computational Chemistry. Mach. Learn. Sci. Technol. https://doi.org/10.1088/2632-2153/ac3ffb