Skip to content

Wireshark Packet Organizer Reader AI Assistant

License

Notifications You must be signed in to change notification settings

AquaTechSoftwareSolutions/PacketWorx

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PacketWorx

PacketWorx is a Python-based AI assistant for Wireshark, designed to read, organize, and analyze network packet captures (PCAP files). It leverages pyshark for packet capture processing, pandas for data organization, and advanced machine learning techniques for packet classification and anomaly detection.

Features

  • Reads and parses PCAP files and live captures using pyshark.
  • Organizes packet information in a structured format using pandas.
  • Implements advanced AI technology to classify packets based on their characteristics.
  • Utilizes Gradient Boosting Classifier for packet classification.
  • Detects anomalies in network traffic using Isolation Forest.
  • Suggests filters for Wireshark based on packet analysis.
  • Highlights suspicious and anomalous packets in the capture.

Installation

To install the required dependencies, run:

pip install pyshark pandas scikit-learn joblib

Usage

      1.    Ensure you have a PCAP file (e.g., example.pcap) that you want to analyze or specify a network interface for live capture.
      2.    Create a Python script (e.g., packetworx.py) with the following content:

import pyshark
import pandas as pd
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import IsolationForest
from joblib import dump, load
import os
from datetime import datetime
import numpy as np

class PacketWorx:
    def __init__(self, pcap_file=None, interface=None):
        self.pcap_file = pcap_file
        self.interface = interface
        self.model_file = 'packet_classifier.joblib'
        self.anomaly_model_file = 'anomaly_detector.joblib'
        self.model = self.load_model()
        self.anomaly_model = self
       .load_anomaly_model()
        self.features = [
            'length', 'source_port', 'destination_port', 'time_of_day',
            'protocol_number', 'packet_size_variance', 'source_bytes', 'destination_bytes'
        ]

    def read_pcap(self):
        if self.pcap_file:
            capture = pyshark.FileCapture(self.pcap_file)
        elif self.interface:
            capture = pyshark.LiveCapture(interface=self.interface)
        else:
            raise ValueError("No pcap file or interface provided.")
       
        packets = []
        source_bytes = {}
        destination_bytes = {}

        for packet in capture:
            try:
                length = int(packet.length)
                src_ip = packet.ip.src
                dst_ip = packet.ip.dst

                if src_ip not in source_bytes:
                    source_bytes[src_ip] = 0
                if dst_ip not in destination_bytes:
                    destination_bytes[dst_ip] = 0

                source_bytes[src_ip] += length
                destination_bytes[dst_ip] += length

                packet_info = {
                    'packet_number': packet.number,
                    'timestamp': packet.sniff_time,
                    'source_ip': src_ip,
                    'destination_ip': dst_ip,
                    'protocol': packet.transport_layer,
                    'length': length,
                    'time_of_day': packet.sniff_time.hour * 3600 + packet.sniff_time.minute * 60 + packet.sniff_time.second,
                    'protocol_number': self.get_protocol_number(packet.transport_layer),
                    'source_bytes': source_bytes[src_ip],
                    'destination_bytes': destination_bytes[dst_ip]
                }
               
                if hasattr(packet, 'tcp'):
                    packet_info['source_port'] = int(packet.tcp.srcport)
                    packet_info['destination_port'] = int(packet.tcp.dstport)
                elif hasattr(packet, 'udp'):
                    packet_info['source_port'] = int(packet.udp.srcport)
                    packet_info['destination_port'] = int(packet.udp.dstport)
                else:
                    packet_info['source_port'] = 0
                    packet_info['destination_port'] = 0

                packets.append(packet_info)

            except AttributeError:
                pass

        df = pd.DataFrame(packets)
        df['packet_size_variance'] = df['length'].rolling(window=10).var()
        df.fillna(0, inplace=True)

        return df

    def get_protocol_number(self, protocol):
        if protocol == 'TCP':
            return 6
        elif protocol == 'UDP':
            return 17
        return 0

    def train_model(self, df):
        features = df[self.features].fillna(0)
        labels = df['protocol'].apply(lambda x: 1 if x == 'TCP' else 0)  # Dummy labels for example
       
        model = GradientBoostingClassifier()
        model.fit(features, labels)
        dump(model, self.model_file)

    def train_anomaly_model(self, df):
        features = df[self.features].fillna(0)
        scaler = StandardScaler()
        features_scaled = scaler.fit_transform(features)
        pca = PCA(n_components=0.95)
        features_reduced = pca.fit_transform(features_scaled)
        anomaly_model = IsolationForest(contamination=0.01)
        anomaly_model.fit(features_reduced)
        dump((scaler, pca, anomaly_model), self.anomaly_model_file)

    def load_model(self):
        if os.path.exists(self.model_file):
            return load(self.model_file)
        return None

    def load_anomaly_model(self):
        if os.path.exists(self.anomaly_model_file):
            return load(self.anomaly_model_file)
        return None

    def classify_packets(self, df):
        if self.model:
            features = df[self.features].fillna(0)
            predictions = self.model.predict(features)
            df['classification'] = predictions
        else:
            df['classification'] = np.nan
        return df

    def detect_anomalies(self, df):
        if self.anomaly_model:
            scaler, pca, anomaly_model = self.anomaly_model
            features = df[self.features].fillna(0)
            features_scaled = scaler.transform(features)
            features_reduced = pca.transform(features_scaled)
            df['anomaly_score'] = anomaly_model.decision_function(features_reduced)
            df['anomaly'] = anomaly_model.predict(features_reduced)
        else:
            df['anomaly_score'] = np.nan
            df['anomaly'] = np.nan
        return df

    def run(self):
        df = self.read_pcap()

        if self.model is None:
            self.train_model(df)
            self.model = self.load_model()

        if self.anomaly_model is None:
            self.train_anomaly_model(df)
            self.anomaly_model = self.load_anomaly_model()
       
        if self.model:
            df = self.classify_packets(df)

        if self.anomaly_model:
            df = self.detect_anomalies(df)

        print(df)

    def suggest_filter(self):
        if self.model:
            print("Suggested filter: tcp or udp")

    def highlight_suspicious_packets(self):
        df = self.read_pcap()
        if self.model:
            df = self.classify_packets(df)
            suspicious_packets = df[df['classification'] == 1]
            print("Suspicious packets:")
            print(suspicious_packets)

    def highlight_anomalous_packets(self):
        df = self.read_pcap()
        if self.anomaly_model:
            df = self.detect_anomalies(df)
            anomalous_packets = df[df['anomaly'] == -1]
            print("Anomalous packets:")
            print(anomalous_packets)

if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="PacketWorx: An AI assistant for Wireshark.")
    parser.add_argument('--pcap', type=str, help="Path to the pcap file.")
    parser.add_argument('--interface', type=str, help="Network interface for live capture.")
    parser.add_argument('--filter', action='store_true', help="Suggest a filter for Wireshark.")
    parser.add_argument('--highlight', action='store_true', help="Highlight suspicious packets.")
    parser.add_argument('--anomalies', action='store_true', help="Highlight anomalous packets.")

    args = parser.parse_args()

    packetworx = PacketWorx(pcap_file=args.pcap, interface=args.interface)

    if args.filter:
        packetworx.suggest_filter()
    elif args.highlight:
        packetworx.highlight_suspicious_packets()
    elif args.anomalies:
        packetworx.highlight_anomalous_packets()
    else:
        packetworx.run()
  1. Replace 'example.pcap' with the path to your actual PCAP file or specify a network interface for live capture.
  2. Run the script with appropriate options:
# Analyze a pcap file
python packetworx.py --pcap example.pcap

# Analyze live capture from a network interface
python packetworx.py --interface eth0

# Suggest a filter for Wireshark
python packetworx.py --filter

# Highlight suspicious packets
python packetworx.py --highlight

# Highlight anomalous packets
python packetworx.py --anomalies

How It Works

  • Reading PCAP Files or Live Captures: The read_pcap function uses pyshark to read and parse the PCAP file or live capture, extracting relevant packet information.
  • Organizing Data: The extracted packet information is stored in a pandas DataFrame for easy manipulation and analysis.
  • Training the Model: If a model does not already exist, the script trains a Gradient Boosting Classifier on the packet data using enhanced features and dummy labels.
  • Classifying Packets: The trained model is used to classify packets, and the results are added to the DataFrame.
  • Anomaly Detection: The script detects anomalies in the network traffic using Isolation Forest and adds the results to the DataFrame.
  • Suggesting Filters: The suggest_filter method provides filter suggestions based on the packet analysis.
  • Highlighting Suspicious and Anomalous Packets: The highlight_suspicious_packets and highlight_anomalous_packets methods print packets classified as suspicious or anomalous.

Contributing

Contributions are welcome! Feel free to open an issue or submit a pull request.

License

This project is licensed under the MIT License.


### Explanation of Enhancements

- **Advanced Feature Engineering**: More sophisticated features such as `protocol_number`, `packet_size_variance`, `source_bytes`, and `destination_bytes` are extracted.
- **Model Improvement**: The script uses Gradient Boosting Classifier for classification and Isolation Forest for anomaly detection.
- **Anomaly Detection**: An Isolation Forest model is implemented to identify unusual patterns in the network traffic.
- **User Interaction Enhancements**: The CLI is enhanced to allow highlighting of anomalous packets and more detailed suggestions.

This updated script and README file make PacketWorx a more advanced AI assistant for Wireshark, capable of sophisticated network analysis and real-time anomaly detection.

About

Wireshark Packet Organizer Reader AI Assistant

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%