Skip to content

Analytics-for-Forecasting/qrnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Quantile Regression Neural Network

This package is based on the paper, An improved quantile regression neural network for probabilistic load forecasting, W Zhang.

Usage

from qrnn import get_model, qloss
from keras.callbacks import *
import numpy as np

# Generate the synthetic data
x1 = np.sin(np.arange(0, 9, 0.01))
x2 = np.cos(np.arange(0, 9, 0.01))
x3 = x1**2
x4 = (x1+x2)/2

Xtrain = np.vstack((x2, x3, x4)).T #(900, 3)
Ytrain = np.array([x1]*1).T #(900, 1)

# Parameters
input_dim = 3
num_hidden_layers = 2
num_units = [200, 200]
act = ['relu', 'relu']
dropout = [0.1, 0.1]
gauss_std = [0.3, 0.3]
num_quantiles = 9

# Get model
model = get_model(input_dim, num_units, act, dropout, gauss_std, num_hidden_layers, num_quantiles)
print(model.summary())

# Train
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model.compile(loss=lambda y_t, y_p: qloss(y_true=y_t, y_pred=y_p, n_q=num_quantiles), 
              optimizer='adam')
model.fit(x=Xtrain, y=Ytrain, 
          epochs=10, 
          validation_split=0.2, 
          batch_size=64, 
          shuffle=True, 
          callbacks=[early_stopping]
         )

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published