Skip to content

Commit

Permalink
feat: add models for gitee.ai (langgenius#9490)
Browse files Browse the repository at this point in the history
  • Loading branch information
fchange authored Oct 28, 2024
1 parent c13dc62 commit 0ebd985
Show file tree
Hide file tree
Showing 44 changed files with 1,586 additions and 0 deletions.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
47 changes: 47 additions & 0 deletions api/core/model_runtime/model_providers/gitee_ai/_common.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
from dashscope.common.error import (
AuthenticationError,
InvalidParameter,
RequestFailure,
ServiceUnavailableError,
UnsupportedHTTPMethod,
UnsupportedModel,
)

from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
InvokeBadRequestError,
InvokeConnectionError,
InvokeError,
InvokeRateLimitError,
InvokeServerUnavailableError,
)


class _CommonGiteeAI:
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
"""
Map model invoke error to unified error
The key is the error type thrown to the caller
The value is the error type thrown by the model,
which needs to be converted into a unified error type for the caller.
:return: Invoke error mapping
"""
return {
InvokeConnectionError: [
RequestFailure,
],
InvokeServerUnavailableError: [
ServiceUnavailableError,
],
InvokeRateLimitError: [],
InvokeAuthorizationError: [
AuthenticationError,
],
InvokeBadRequestError: [
InvalidParameter,
UnsupportedModel,
UnsupportedHTTPMethod,
],
}
25 changes: 25 additions & 0 deletions api/core/model_runtime/model_providers/gitee_ai/gitee_ai.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
import logging

from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.model_provider import ModelProvider

logger = logging.getLogger(__name__)


class GiteeAIProvider(ModelProvider):
def validate_provider_credentials(self, credentials: dict) -> None:
"""
Validate provider credentials
if validate failed, raise exception
:param credentials: provider credentials, credentials form defined in `provider_credential_schema`.
"""
try:
model_instance = self.get_model_instance(ModelType.LLM)
model_instance.validate_credentials(model="Qwen2-7B-Instruct", credentials=credentials)
except CredentialsValidateFailedError as ex:
raise ex
except Exception as ex:
logger.exception(f"{self.get_provider_schema().provider} credentials validate failed")
raise ex
35 changes: 35 additions & 0 deletions api/core/model_runtime/model_providers/gitee_ai/gitee_ai.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
provider: gitee_ai
label:
en_US: Gitee AI
zh_Hans: Gitee AI
description:
en_US: 快速体验大模型,领先探索 AI 开源世界
zh_Hans: 快速体验大模型,领先探索 AI 开源世界
icon_small:
en_US: Gitee-AI-Logo.svg
icon_large:
en_US: Gitee-AI-Logo-full.svg
help:
title:
en_US: Get your token from Gitee AI
zh_Hans: 从 Gitee AI 获取 token
url:
en_US: https://ai.gitee.com/dashboard/settings/tokens
supported_model_types:
- llm
- text-embedding
- rerank
- speech2text
- tts
configurate_methods:
- predefined-model
provider_credential_schema:
credential_form_schemas:
- variable: api_key
label:
en_US: API Key
type: secret-input
required: true
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
model: Qwen2-72B-Instruct
label:
zh_Hans: Qwen2-72B-Instruct
en_US: Qwen2-72B-Instruct
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 6400
parameter_rules:
- name: stream
use_template: boolean
label:
en_US: "Stream"
zh_Hans: "流式"
type: boolean
default: true
required: true
help:
en_US: "Whether to return the results in batches through streaming. If set to true, the generated text will be pushed to the user in real time during the generation process."
zh_Hans: "是否通过流式分批返回结果。如果设置为 true,生成过程中实时地向用户推送每一部分生成的文本。"

- name: max_tokens
use_template: max_tokens
label:
en_US: "Max Tokens"
zh_Hans: "最大Token数"
type: int
default: 512
min: 1
required: true
help:
en_US: "The maximum number of tokens that can be generated by the model varies depending on the model."
zh_Hans: "模型可生成的最大 token 个数,不同模型上限不同。"

- name: temperature
use_template: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"

- name: top_p
use_template: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens;当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"

- name: top_k
use_template: top_k
label:
en_US: "Top K"
zh_Hans: "Top K"
type: int
default: 50
min: 0
max: 100
required: true
help:
en_US: "The value range is [0,100], which limits the model to only select from the top k words with the highest probability when choosing the next word at each step. The larger the value, the more diverse text generation will be."
zh_Hans: "取值范围为 [0,100],限制模型在每一步选择下一个词时,只从概率最高的前 k 个词中选取。数值越大,文本生成越多样。"

- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: -1.0
max: 1.0
precision: 1
required: false
help:
en_US: "Used to adjust the frequency of repeated content in automatically generated text. Positive numbers reduce repetition, while negative numbers increase repetition. After setting this parameter, if a word has already appeared in the text, the model will decrease the probability of choosing that word for subsequent generation."
zh_Hans: "用于调整自动生成文本中重复内容的频率。正数减少重复,负数增加重复。设置此参数后,如果一个词在文本中已经出现过,模型在后续生成中选择该词的概率会降低。"

- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"
Loading

0 comments on commit 0ebd985

Please sign in to comment.