This project contains a provider that allows access to Alice & Bob QPUs and emulators using the Qiskit framework.
Full documentation is available here and sample notebooks using the provider are available here.
You can install the provider using pip
:
pip install qiskit-alice-bob-provider
pip
will handle installing all the python dependencies automatically and you
will always install the latest (and well-tested) version.
Warning
Transpilation of gates CRY, RCCX and RCCCX does not work on macOS currently.
To obtain an API key, get a Felis Cloud subscription on the Google Cloud Marketplace or contact Alice & Bob.
You can initialize the Alice & Bob remote provider using your API key locally with:
from qiskit_alice_bob_provider import AliceBobRemoteProvider
ab = AliceBobRemoteProvider('MY_API_KEY')
Where MY_API_KEY
is your API key to the Alice & Bob API.
print(ab.backends())
backend = ab.get_backend('EMU:1Q:LESCANNE_2020')
The backend can then be used like a regular Qiskit backend:
from qiskit import QuantumCircuit
c = QuantumCircuit(1, 2)
c.initialize('+', 0)
c.measure_x(0, 0)
c.measure(0, 1)
job = backend.run(c)
res = job.result()
print(res.get_counts())
This project contains multiple emulators of multi cat qubit processors.
from qiskit_alice_bob_provider import AliceBobLocalProvider
from qiskit import QuantumCircuit, transpile
provider = AliceBobLocalProvider()
print(provider.backends())
# EMU:6Q:PHYSICAL_CATS, EMU:40Q:PHYSICAL_CATS, EMU:1Q:LESCANNE_2020
The EMU:nQ:PHYSICAL_CATS
backends are theoretical models of quantum processors made
up of physical cat qubits.
They can be used to study the properties of error correction codes implemented
with physical cat qubits, for different hardware performance levels
(see the parameters of class PhysicalCatProcessor
).
The EMU:1Q:LESCANNE_2020
backend is an interpolated model simulating the processor
used in the seminal paper by Raphaël
Lescanne in 2020.
This interpolated model is configured to act as a digital twin of the cat qubit
used in this paper.
It does not represent the current performance of Alice & Bob's cat qubits.
The example below schedules and simulates a Bell state preparation circuit on
a EMU:6Q:PHYSICAL_CATS
processor, for different values of parameters
average_nb_photons
and kappa_2
.
from qiskit_alice_bob_provider import AliceBobLocalProvider
from qiskit import QuantumCircuit, transpile
provider = AliceBobLocalProvider()
circ = QuantumCircuit(2, 2)
circ.initialize('0+')
circ.cx(0, 1)
circ.measure(0, 0)
circ.measure(1, 1)
# Default 6-qubit QPU with the ratio of memory dissipation rates set to
# k1/k2=1e-5 and cat size, average_nb_photons, set to 16.
backend = provider.get_backend('EMU:6Q:PHYSICAL_CATS')
print(transpile(circ, backend).draw())
# *Displays a timed and scheduled circuit*
print(backend.run(circ, shots=100000).result().get_counts())
# {'11': 49823, '00': 50177}
# Changing the cat size from 16 (default) to 4 and k1/k2 to 1e-2.
backend = provider.get_backend(
'EMU:6Q:PHYSICAL_CATS', average_nb_photons=4, kappa_2=1e4
)
print(backend.run(circ, shots=100000).result().get_counts())
# {'01': 557, '11': 49422, '10': 596, '00': 49425}