Skip to content

A set of Alfresco AI Assistants to help users and customers get the information they need or perform complex tasks, simply conveying each request via natural language

License

Notifications You must be signed in to change notification settings

AlfrescoLabs/alfresco-ai-assistants

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Alfresco AI Assistants

This repository contains several Alfresco AI Assistants to help users and customers get the information they need or perform complex tasks, simply conveying each request via natural language.

For a "behind the scenes" explanation of what is happening in our demo see behind_the_scenes.md.

Applications

This repository contains the following applications:

Name Main files Compose name URLs Description
Alfresco Docs Bot alfresco_docs_bot.py alfresco_docs_bot http://localhost:8503 Ingest the Alfresco documentation and ask it questions.
Alfresco AI Assistant alfresco_ai_assistant.py alfresco_ai_assistant http://localhost:8504 Interact with an Alfresco Content Services instance using natural language requests.

The database can be explored at http://localhost:7474.

App 1 - Alfresco Docs Bot

graph TB
user(User 👤)
llm(LLM 🤖)
vectordb[(Vector database)]
raw-docs{{Raw Documentation 📚}}

user --query-embedded-data--> vectordb
vectordb --relevant-data--> llm
llm --final answer--> user

raw-docs --extraction/chunking/embedding---> vectordb
Loading

Access at:

Features:

  • answer questions based on the specified product's documentation
  • answers will purely be based on Alfresco Docs content

App 2 - Alfredo, the Alfresco AI Assistant

graph BT
user(User 👤)
llm(LLM 🤖)
api

subgraph api[API 👷]
  discovery-api
  search-api
  node-api
end

subgraph tools[Tools 🛠️]
  discovery
  transform
  redact
end

user --query--> llm

llm --choose--> tools

tools --invoke--> api

api --feed data--> llm

llm --final answer--> user
Loading

Access at:

Features:

  • perform complex tasks against a live ACS instance based on human requests
  • find and preview documents
  • show recent document snippets matching a search term
  • transform (e.g.: translate/summarise/classify) documents
  • redact documents
  • copy a document into a specified folder
  • answer questions about the ACS deployment
  • generate PDF reports and upload them to ACS

Configure

Create a .env file from the environment template file env.example

Available variables:

Variable Name Default value Description
ALFRESCO_URL http://localhost:8080 REQUIRED - Base URL to the ACS instance
ALFRESCO_USERNAME admin REQUIRED - Username for the ACS instance
ALFRESCO_PASSWORD admin REQUIRED - Password for the ACS instance
OLLAMA_BASE_URL http://host.docker.internal:11434 REQUIRED - URL to Ollama LLM API
NEO4J_URI neo4j://database:7687 REQUIRED - URL to Neo4j database
NEO4J_USERNAME neo4j REQUIRED - Username for Neo4j database
NEO4J_PASSWORD password REQUIRED - Password for Neo4j database
LLM llama3 REQUIRED - Can be any Ollama model tag, or gpt-4 or gpt-3.5 or claudev2
EMBEDDING_MODEL sentence_transformer REQUIRED - Can be sentence_transformer, openai, aws, ollama or google-genai-embedding-001
AWS_ACCESS_KEY_ID REQUIRED - Only if LLM=claudev2 or embedding_model=aws
AWS_SECRET_ACCESS_KEY REQUIRED - Only if LLM=claudev2 or embedding_model=aws
AWS_DEFAULT_REGION REQUIRED - Only if LLM=claudev2 or embedding_model=aws
OPENAI_API_KEY REQUIRED - Only if LLM=gpt-4 or LLM=gpt-3.5 or embedding_model=openai
GOOGLE_API_KEY REQUIRED - Only required when using GoogleGenai LLM or embedding model google-genai-embedding-001
LANGCHAIN_ENDPOINT "https://api.smith.langchain.com" OPTIONAL - URL to Langchain Smith API
LANGCHAIN_TRACING_V2 false OPTIONAL - Enable Langchain tracing v2
LANGCHAIN_PROJECT OPTIONAL - Langchain project name
LANGCHAIN_API_KEY OPTIONAL - Langchain API key

Warning

The applications have been tested only with Ollama, and specifically llama3, they are not guaranteed to work with other LLMs.

LLM Configuration

Ollama

No need to install Ollama manually, it will run in a container as part of the stack when running with the Linux profile: run docker compose --profile linux up. Make sure to set the OLLAMA_BASE_URL=http://llm:11434 in the .env file when using Ollama docker container.

To use the Linux-GPU profile: run docker compose --profile linux-gpu up. Also change OLLAMA_BASE_URL=http://llm-gpu:11434 in the .env file.

If, for whatever reason, you're unable to run the Ollama container, you can instead install it and run it locally as an alternative option.

You may want to reduce num_ctx to 3072 in commons.py if you are running on cheap GPU or CPU.

Ollama on EKS

Running Ollama locally may yield slow results. A possible solution is to run it on a cheap GPU-enabled EC2 instance which will perform better than any consumer grade GPU.

To create an EKS cluster backed by a single g4dn.xlarge instance:

eksctl create cluster --name hack-turing-titans --node-type=g4dn.xlarge --nodes 1

Install ingress-nginx and cert-manager to expose ollama via https:

helm upgrade --install ingress-nginx ingress-nginx \
--repo https://kubernetes.github.io/ingress-nginx \
--namespace ingress-nginx --create-namespace
helm install \
cert-manager jetstack/cert-manager \
--namespace cert-manager \
--create-namespace \
--set installCRDs=true

Manually create a DNS record pointing to the ingress-nginx ingress CNAME (retrieve it via kubectl get service -n ingress-nginx).

Set your FQDN and apply the ClusterIssuer resource to enable LetsEncrypt certificates generation:

sed -i 's/my-ollama.example.com/YOUR_FQDN/g' k8s/letsencrypt-prod.yaml
kubectl apply -f k8s/letsencrypt-prod.yaml

Finally install Ollama chart:

helm install ollama ollama-helm/ollama \
--namespace ollama \
--create-namespace \
--values ollama.yaml

Develop

Warning

There is a performance issue that impacts python applications in the 4.24.x releases of Docker Desktop. Please upgrade to the latest release before using this stack.

To start everything

docker compose up

If changes to build scripts have been made, rebuild.

docker compose up --build

To enter watch mode (auto rebuild on file changes). First start everything, then in new terminal:

docker compose watch

Shutdown If health check fails or containers don't start up as expected, shutdown completely to start up again.

docker compose down

Scripts

Scripts that may be required to prepare data for the applications to run correctly, they can all be found under ./scripts.

transformer.py

transformer.py is a script that should be run against a local clone of the docs-alfresco repository in order to create the initial-load folder with all the expected documentation for the Alfresco Docs bot.

Credits

This project is based on docker/genai-stack and is the outcome of a three-day internal hackathon at Hyland by the Turing Titans team.

About

A set of Alfresco AI Assistants to help users and customers get the information they need or perform complex tasks, simply conveying each request via natural language

Topics

Resources

License

Stars

Watchers

Forks