Various palmprint feature extraction techniques implemented in Python 2.7 (and OpenCV), as part of my PhD work...
- OpenCV (I used 3.4.2)
- Numpy
- Scipy
- Scikit-learn
- Scikit-image
- Competitive Coding Scheme (CompCode)
- Robust Line Orientation Code (RLOC)
- Local Tetra Pattern (LTrP)
- Local Micro-structure Tetra Pattern (LMTrP)
The implementation can be found in 'LTrP_LMTrP_implementation/LTrP_and_LMTrP_v1.ipynb'
The implementation can be found in 'LTrP_LMTrP_implementation/LTrP_and_LMTrP_v1.ipynb'
[1] A. W. -. Kong and D. Zhang, "Competitive coding scheme for palmprint verification," Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., Cambridge, 2004, pp. 520-523 Vol.1. doi: 10.1109/ICPR.2004.1334184. IEEE-Xplore link
[2] Jia, W., Huang, D. S., & Zhang, D. (2008). Palmprint verification based on robust line orientation code. Pattern Recognition, 41(5), 1521–1530. https://doi.org/10.1016/j.patcog.2007.10.011 link
[3] S. Murala, R. P. Maheshwari and R. Balasubramanian, "Local Tetra Patterns: A New Feature Descriptor for Content-Based Image Retrieval," in IEEE Transactions on Image Processing, vol. 21, no. 5, pp. 2874-2886, May 2012. doi: 10.1109/TIP.2012.2188809. IEEE-Xplore link
[4] Gen Li, Jaihie Kim, "Palmprint recognition with Local Micro-structure Tetra Pattern" in Pattern Recognition, Volume 61, 2017,Pages 29-46, doi: 10.1016/j.patcog.2016.06.025. Science Direct link