Skip to content

Commit

Permalink
ADD: Adding a piechart function to distribution display module.
Browse files Browse the repository at this point in the history
This new function uses act.utils.calculate_percentages to create
a pie chart of percentages of user defined fields of a dataset.
  • Loading branch information
zssherman committed May 1, 2024
1 parent 532adcf commit 13b4413
Show file tree
Hide file tree
Showing 5 changed files with 164 additions and 1 deletion.
82 changes: 81 additions & 1 deletion act/plotting/distributiondisplay.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
import xarray as xr
import pandas as pd

from ..utils import datetime_utils as dt_utils
from ..utils import datetime_utils as dt_utils, calculate_percentages
from .plot import Display


Expand Down Expand Up @@ -863,3 +863,83 @@ def plot_violin(
self.axes[subplot_index].set_yticks([])

return self.axes[subplot_index]

def plot_pie_chart(
self,
fields,
dsname=None,
subplot_index=(0,),
set_title=None,
autopct='%1.1f%%',
percent_kwargs=None,
**kwargs,
):
"""
This procedure will produce a pie chart for the selected fields.
Parameters
----------
fields : list
The list of fields to calculate percentages on for the pie chart.
dsname : str or None
The name of the datastream the field is contained in. Set
to None to let ACT automatically determine this.
subplot_index : tuple
The subplot index to place the plot in
set_title : str
The title of the plot.
autopct : str
Format string for the percentages. Default is float with one
decimal place. If this parameter is set to None, no percentage
string values are displayed.
percent_kwargs : dict
Dictionary of parameters to be used in the act.utils.calculate_percentages
function. None will use default parameters.
Other keyword arguments will be passed into :func:`matplotlib.pyplot.pie`.
Returns
-------
ax : matplotlib axis handle
The matplotlib axis handle of the plot
"""
if dsname is None and len(self._ds.keys()) > 1:
raise ValueError(
'You must choose a datastream when there are 2 '
+ 'or more datasets in the DistributionDisplay '
+ 'object.'
)
elif dsname is None:
dsname = list(self._ds.keys())[0]

# Get the current plotting axis
if self.fig is None:
self.fig = plt.figure()
if self.axes is None:
self.axes = np.array([plt.axes()])
self.fig.add_axes(self.axes[0])

# Set Title
if set_title is None:
set_title = ' '.join(
[
dsname,
'on',
dt_utils.numpy_to_arm_date(self._ds[dsname].time.values[0]),
]
)
self.axes[subplot_index].set_title(set_title)

if percent_kwargs is not None:
percentages = calculate_percentages(self._ds[dsname], fields, **percent_kwargs)
else:
percentages = calculate_percentages(self._ds[dsname], fields)

self.axes[subplot_index].pie(
[percentages[field] for field in percentages.keys()],
labels=percentages.keys(),
autopct=autopct,
**kwargs,
)
return self.axes[subplot_index]
50 changes: 50 additions & 0 deletions examples/plotting/plot_pie_chart.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
"""
Calculate and View Aerosol Percentages
--------------------------------------
Calculate the percentages of different aerosols in a Aerosol
Chemical Speciation (AOS) monitor dataset and view the percentages
in a pie chart.
Written: Zach Sherman
"""

from arm_test_data import DATASETS
import matplotlib.pyplot as plt

import act
from act.io.arm import read_arm_netcdf

# Read an ARM AOS dataset
filename = DATASETS.fetch('sgpaosacsmE13.b2.20230420.000109.nc')
ds = read_arm_netcdf(filename)

# Let us print out the fields in the dataset and see what it contains.
print(ds.data_vars.keys())

# Knowing what fields the dataset contains, let's create a list of fields
# to use in the plot.

fields = ['sulfate', 'ammonium', 'nitrate', 'chloride']

# We also want to provide some keyword arguments to avoid invalid data such
# as negative values.
percent_kwargs = {'threshold': 0.0, 'fill_value': 0.0}

# Create a DistributionDisplay object to compare fields
display = act.plotting.DistributionDisplay(ds)

# We can set one of the slices to explode and give it a nice shadow.
explode = (0, 0.1, 0, 0)
shadow = True

# Create a pie chart using the fields list. The percentages of the
# fields will be calculated using act.utils.calculate_percentages.
display.plot_pie_chart(
fields,
percent_kwargs=percent_kwargs,
explode=explode,
shadow=True
)
plt.show()
Binary file added tests/plotting/baseline/test_plot_pie_chart.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
33 changes: 33 additions & 0 deletions tests/plotting/test_distributiondisplay.py
Original file line number Diff line number Diff line change
Expand Up @@ -412,3 +412,36 @@ def test_scatter2():
return display.fig
finally:
matplotlib.pyplot.close(display.fig)


@pytest.mark.mpl_image_compare(tolerance=10)
def test_plot_pie_chart():
ds = act.io.arm.read_arm_netcdf(sample_files.EXAMPLE_AOSACSM)
fields = ['sulfate', 'ammonium', 'nitrate', 'chloride']
display = DistributionDisplay(ds)
display.plot_pie_chart(fields)
ds.close()

try:
return display.fig
finally:
matplotlib.pyplot.close(display.fig)


@pytest.mark.mpl_image_compare(tolerance=10)
def test_plot_pie_chart_kwargs():
ds = act.io.arm.read_arm_netcdf(sample_files.EXAMPLE_AOSACSM)
fields = ['sulfate', 'ammonium', 'nitrate', 'chloride']
percent_kwargs = {'threshold': 0.0, 'fill_value': 0.0}
display = DistributionDisplay(ds)
display.plot_pie_chart(
fields,
percent_kwargs=percent_kwargs,
colors=['olivedrab', 'rosybrown', 'gray', 'saddlebrown']
)
ds.close()

try:
return display.fig
finally:
matplotlib.pyplot.close(display.fig)

0 comments on commit 13b4413

Please sign in to comment.