Skip to content

ANRGUSC/SafeCampus

Repository files navigation

SafeCampus

This tool is designed to train and evaluate reinforcement learning agents for epidemic control simulations based on stochastic discrete epidemic models. The agents are implemented using model-free off-policy methods. Specifically, we employ tabular Q-Learning and Deep Q-Networks (DQN) to learn policies for controlling the spread of an epidemic for a single classroom operation.

Installation

Prerequisites

  1. Python 3.8 or higher
  2. pip
  3. virtualenv

Steps

  1. Clone the repository:

    git clone https://github.com/yourusername/SafeCampus-Multidiscrete.git
    cd SafeCampus-Multidiscrete
  2. Create a virtual environment:

    python3 -m venv venv
    source venv/bin/activate  # On Windows use `venv\Scripts\activate`
  3. Install the required packages:

    pip install -r requirements.txt
  4. Install the custom Gym environment:

    cd campus_gym
    pip install -e .
    cd ..

Configuration

Configuration files for the shared settings and specific agents are located in the config directory.

Shared Configuration

The shared configuration is specified in config/config_shared.yaml. It includes settings that are common across different agents, such as environment details and logging configurations.

Agent-Specific Configuration

Agent-specific configurations are specified in separate YAML files, such as config/config_q_learning.yaml for Q-Learning and config/config_dqn.yaml for DQN. These files contain settings specific to each agent, including hyperparameters.

Running the Project

Training an Agent

To train an agent, use the following command:

python main.py train --alpha 0.5 --agent_type q_learning

Evaluating an Agent

To evaluate a trained agent, use the following command:

python main.py eval --alpha 0.5 --agent_type q_learning --run_name your_run_name

or for DQN:

python main.py eval --alpha 0.5 --agent_type dqn --run_name your_run_name

Running Multiple Training Runs

To run multiple training runs and calculate tolerance intervals, use:

python main.py multi --alpha_t 0.05 --beta_t 0.9 --num_runs 5 --agent_type q_learning

or for DQN:

python main.py multi --alpha_t 0.05 --beta_t 0.9 --num_runs 5 --agent_type dqn

Hyperparameter Optimization with Optuna

To perform hyperparameter optimization using Optuna, use:

python main.py optuna --agent_type q_learning

or for DQN:

python main.py optuna --agent_type dqn

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •