-
Notifications
You must be signed in to change notification settings - Fork 98
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update the subchandra plots to those used in the paper
- Loading branch information
Showing
3 changed files
with
247 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
#!/usr/bin/env python3 | ||
|
||
import argparse | ||
import os | ||
import sys | ||
from functools import reduce | ||
|
||
import matplotlib | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from mpl_toolkits.axes_grid1 import ImageGrid | ||
|
||
import yt | ||
from yt.fields.derived_field import ValidateSpatial | ||
from yt.frontends.boxlib.api import CastroDataset | ||
from yt.funcs import just_one | ||
# assume that our data is in CGS | ||
from yt.units import amu, cm | ||
|
||
matplotlib.use('agg') | ||
|
||
|
||
clip_val = -35 | ||
max_val = -19 | ||
|
||
# how much to coarsen for the contouring | ||
blocking_factor = 8 | ||
|
||
def _lap_rho(field, data): | ||
dr = just_one(data["index", "dr"]).d | ||
r = data["index", "r"].d | ||
rl = r - 0.5 * dr | ||
rr = r + 0.5 * dr | ||
|
||
dz = just_one(data["index", "dz"]).d | ||
dens = data["gas", "density"].d | ||
|
||
_lap = np.zeros_like(dens) | ||
|
||
lapl_field = data.ds.arr(np.zeros(dens.shape, dtype=np.float64), None) | ||
|
||
# r-component | ||
_lap[1:-1, :] = 1 / (r[1:-1, :] * dr**2) * ( | ||
- 2.0 * r[1:-1, :] * dens[1:-1:, :] + | ||
rl[1:-1, :] * dens[:-2, :] + rr[1:-1, :] * dens[2:, :]) | ||
|
||
_lap[:, 1:-1] += 1 / dz**2 * (dens[:, 2:] + dens[:, :-2] - 2.0 * dens[:, 1:-1]) | ||
lapl_field[1:-1, 1:-1] = np.log(np.abs(_lap[1:-1, 1:-1] / dens[1:-1, 1:-1])) | ||
lapl_field[lapl_field < clip_val] = clip_val | ||
return lapl_field | ||
|
||
def doit(rows, field): | ||
|
||
nrows = len(rows) | ||
ncols = len(rows[0][0]) | ||
|
||
|
||
fig = plt.figure() | ||
|
||
grid = ImageGrid(fig, 111, nrows_ncols=(nrows, ncols), | ||
axes_pad=0.25, cbar_pad=0.05, label_mode="L", cbar_mode="single") | ||
|
||
|
||
i = 0 | ||
|
||
for row in rows: | ||
|
||
plotfiles, label = row | ||
|
||
for irow, pf in enumerate(plotfiles): | ||
|
||
ds = CastroDataset(pf) | ||
|
||
if field == "lap_rho": | ||
ds.force_periodicity() | ||
ds.add_field(name=("gas", "lap_rho"), sampling_type="local", | ||
function=_lap_rho, units="", | ||
validators=[ValidateSpatial(1)]) | ||
|
||
domain_frac = 0.2 | ||
|
||
xmin = ds.domain_left_edge[0] | ||
xmax = domain_frac * ds.domain_right_edge[0] | ||
xctr = 0.5 * (xmin + xmax) | ||
L_x = xmax - xmin | ||
|
||
ymin = ds.domain_left_edge[1] | ||
ymax = ds.domain_right_edge[1] | ||
yctr = 0.5 * (ymin + ymax) | ||
L_y = ymax - ymin | ||
ymin = yctr - 0.5 * domain_frac * L_y | ||
ymax = yctr + 0.5 * domain_frac * L_y | ||
L_y = ymax - ymin | ||
|
||
sp = yt.SlicePlot(ds, "theta", field, center=[xctr, yctr, 0.0*cm], width=[L_x, L_y, 0.0*cm], fontsize="14") | ||
sp.set_buff_size((2400,2400)) | ||
|
||
if field == "Temp": | ||
text_color = "white" | ||
else: | ||
text_color = "black" | ||
|
||
sp.annotate_text((0.05, 0.05), f"time = {float(ds.current_time):8.3f} s", coord_system="axis", text_args={"color": text_color, "fontsize": "12"}) | ||
if (irow == 0): | ||
sp.annotate_text((0.05, 0.925), f"{label}", coord_system="axis", text_args={"color": text_color, "fontsize": "14"}) | ||
|
||
if (irow == 0): | ||
sp.annotate_grids(max_level=10, cmap="tab10") | ||
|
||
if field == "Temp": | ||
sp.set_zlim(field, 5.e7, 4e9) | ||
sp.set_cmap(field, "magma") | ||
elif field == "enuc": | ||
sp.set_log(field, True, linthresh=1.e15) | ||
sp.set_zlim(field, -1.e22, 1.e22) | ||
sp.set_cmap(field, "bwr") | ||
elif field == "abar": | ||
sp.set_zlim(field, 4, 28) | ||
sp.set_log(field, False) | ||
sp.set_cmap(field, "plasma_r") | ||
elif field == "lap_rho": | ||
sp.set_zlim(field, clip_val, max_val) | ||
sp.set_log(field, False) | ||
sp.set_cmap(field, "bone_r") | ||
|
||
sp.set_axes_unit("km") | ||
|
||
plot = sp.plots[field] | ||
plot.figure = fig | ||
plot.axes = grid[i].axes | ||
plot.cax = grid.cbar_axes[i] | ||
if irow < len(plotfiles)-1: | ||
grid[i].axes.xaxis.offsetText.set_visible(False) | ||
|
||
sp._setup_plots() | ||
|
||
i += 1 | ||
|
||
fig.set_size_inches(10, 14) | ||
plt.tight_layout() | ||
plt.savefig(f"subch_{field}_res_compare.pdf") | ||
|
||
if __name__ == "__main__": | ||
|
||
|
||
subch_40km = [("subch_sdc_40km/subch_plt02123", | ||
"subch_sdc_40km/subch_plt04184", | ||
"subch_sdc_40km/subch_plt08509", | ||
"subch_sdc_40km/subch_plt17272"), "40 km"] | ||
|
||
subch_20km = [("subch_sdc/subch_plt02123", | ||
"subch_sdc/subch_plt04196", | ||
"subch_sdc/subch_plt08614", | ||
"subch_sdc/subch_plt17412"), "20 km"] | ||
|
||
subch_10km = [("subch_sdc_10km_3lev/subch_plt02123", | ||
"subch_sdc_10km_3lev/subch_plt04197", | ||
"subch_sdc_10km_3lev/subch_plt08582", | ||
"subch_sdc_10km_3lev/subch_plt17526"), "10 km"] | ||
|
||
subch_5km = [("subch_sdc_5km_4lev/subch_plt02123", | ||
"subch_sdc_5km_4lev/subch_plt04197", | ||
"subch_sdc_5km_4lev/subch_plt08581", | ||
"subch_sdc_5km_4lev/subch_plt17472"), "5 km"] | ||
|
||
field = "Temp" | ||
|
||
doit([subch_40km, subch_20km, subch_10km, subch_5km], field) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
#!/usr/bin/env python3 | ||
|
||
import argparse | ||
import os | ||
import sys | ||
from functools import reduce | ||
|
||
import matplotlib | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from mpl_toolkits.axes_grid1 import ImageGrid | ||
|
||
import yt | ||
from yt.fields.derived_field import ValidateSpatial | ||
from yt.frontends.boxlib.api import CastroDataset | ||
from yt.funcs import just_one | ||
# assume that our data is in CGS | ||
from yt.units import amu, cm | ||
|
||
matplotlib.use('agg') | ||
|
||
|
||
plotfile = "subch_plt00000" | ||
|
||
fig = plt.figure() | ||
|
||
ds = CastroDataset(plotfile) | ||
|
||
xmin = 0 * cm | ||
xmax = 1.e8 * cm | ||
|
||
xctr = 0.5 * (xmin + xmax) | ||
L_x = xmax - xmin | ||
|
||
ymin = 5.42e9 * cm | ||
ymax = 5.58e9 * cm | ||
yctr = 0.5 * (ymin + ymax) | ||
L_y = ymax - ymin | ||
|
||
field = "Temp" | ||
|
||
sp = yt.SlicePlot(ds, "theta", field, center=[xctr, yctr, 0.0*cm], width=[L_x, L_y, 0.0*cm], fontsize="14") | ||
sp.set_buff_size((2400,2400)) | ||
|
||
sp.set_zlim(field, 5.e7, 4e9) | ||
sp.set_cmap(field, "magma") | ||
|
||
sp.annotate_contour(("gas", "density"), take_log=True, ncont=3, clim=(1.e4, 1.e6), plot_args={"colors": "white", "linestyles": ":"}) | ||
|
||
sp.set_axes_unit("km") | ||
|
||
sp.save(f"subch_{field}_zoom.pdf") |