-
Notifications
You must be signed in to change notification settings - Fork 308
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fix orbax to hf converter for Llama3.1-8B #1123
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
This file was deleted.
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
""" | ||
Copyright 2024 Google LLC | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
https://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
Usage: python3 golden_llama3-70b_export.py --model-id meta-llama/Meta-Llama-3-70B --output-path llama3-70b/golden_logits/golden_data_llama3-70b.jsonl | ||
""" | ||
|
||
import os | ||
import torch | ||
import argparse | ||
from transformers import AutoTokenizer, AutoModelForCausalLM | ||
import jsonlines | ||
from google.cloud import storage | ||
|
||
# Load the tokenizer and model from Hugging Face | ||
|
||
|
||
def upload_blob(bucket_name, source_file_name, destination_blob_name): | ||
"""Uploads a file to the bucket.""" | ||
storage_client = storage.Client() | ||
bucket = storage_client.get_bucket(bucket_name) | ||
blob = bucket.blob(destination_blob_name) | ||
|
||
blob.upload_from_filename(source_file_name) | ||
|
||
|
||
def save_golden_logits(model_id, output_path): | ||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B") | ||
model = AutoModelForCausalLM.from_pretrained( | ||
model_id, | ||
torch_dtype=torch.float32, | ||
) | ||
|
||
# Your prompt text | ||
prompt_texts = ["I love to"] | ||
all_data_to_save = [] | ||
|
||
for prompt_text in prompt_texts: | ||
# Encode the prompt text | ||
input_ids = tokenizer.encode(prompt_text, return_tensors="pt") | ||
|
||
# Get the logits for the prompt + completion | ||
with torch.no_grad(): | ||
outputs = model(input_ids) | ||
logits = outputs.logits | ||
|
||
# Convert logits to fp32 | ||
logits = logits.cpu().numpy().astype("float32") | ||
|
||
# Prepare data to be saved | ||
data_to_save = { | ||
"prompt": prompt_text, | ||
"tokens": input_ids.tolist()[0], | ||
"logits": logits.tolist()[0], # Convert numpy array to list for JSON serialization | ||
} | ||
all_data_to_save.append(data_to_save) | ||
|
||
with jsonlines.open(output_path, "w") as f: | ||
f.write_all(all_data_to_save) | ||
|
||
upload_blob("maxtext-llama", output_path, "Llama3_1_8B/golden-logits/" + output_path) | ||
print("File {} uploaded to {}.".format(output_path, "Llama3_1_8B/golden-logits/" + output_path)) | ||
os.remove(output_path) | ||
|
||
|
||
def main(raw_args=None) -> None: | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--model-id", type=str, required=False, default="meta-llama/Llama-3.1-8B") | ||
parser.add_argument("--output-path", type=str, required=True) | ||
args = parser.parse_args(raw_args) | ||
save_golden_logits(args.model_id, args.output_path) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
""" | ||
Copyright 2024 Google LLC | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
https://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
""" | ||
|
||
r"""This is to inspect/analyze two weights with the same structure to find differences. | ||
This assumes weights are dumped in a pickle file | ||
Usage: | ||
python MaxText/weight_inspector.py --lhs left_hand.pkl --rhs right_hand.pkl | ||
""" | ||
|
||
import argparse | ||
import pickle | ||
import numpy as np | ||
import torch | ||
import max_logging | ||
|
||
|
||
def inspect_weights(left_path, right_path): | ||
"""Load the pickle files and compare contents.""" | ||
with open(left_path, "rb") as file: | ||
left_weights = pickle.load(file) | ||
|
||
with open(right_path, "rb") as file: | ||
right_weights = pickle.load(file) | ||
assert sorted(left_weights.keys()) == sorted( | ||
right_weights.keys() | ||
), f"Weights structure does not match! {list(set(left_weights.keys()).symmetric_difference(right_weights.keys()))}" | ||
|
||
mismatched_keys = [] | ||
# Iterate through keys common to both dictionaries | ||
for key in left_weights.keys() & right_weights.keys(): # Intersection of keys | ||
if ".0." in key: # check only layer 0 of the model | ||
assert ( | ||
left_weights[key].shape == right_weights[key].shape | ||
), f"Mismatched shapes left {left_weights[key].shape}, right right_weights[key].shape" | ||
if not np.allclose( | ||
left_weights[key].type(torch.float16).numpy(), right_weights[key].type(torch.float16).numpy(), atol=1e-8 | ||
): | ||
mismatched_keys.append(key) | ||
|
||
if mismatched_keys: | ||
max_logging.log("Contents of mismatched keys") | ||
for key in mismatched_keys: | ||
max_logging.log(f"Key: {key}") | ||
max_logging.log(f"{left_weights[key]=}") | ||
max_logging.log(f"{right_weights[key]=}") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--lhs", type=str, required=True) | ||
parser.add_argument("--rhs", type=str, required=True) | ||
|
||
args = parser.parse_args() | ||
|
||
inspect_weights(args.lhs, args.rhs) | ||
|
||
args = parser.parse_args() |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
#!/bin/bash | ||
|
||
# This script is to test the flow of MaxText/llama_mistral_mixtral_orbax_to_hf.py. | ||
# Steps in the script: | ||
# 1. Convert MaxText orbax ckpt to HF using MaxText/llama_mistral_mixtral_orbax_to_hf.py | ||
# 2. Confirm the logits match for MaxText orbax ckpt and the new HF ckpt created in step 2. | ||
set -ex | ||
export MODEL_VARIATION='llama3.1-8b' | ||
|
||
export BASE_OUTPUT_PATH=gs://runner-maxtext-logs/2024-12-18-17-35 | ||
|
||
export CONVERTED_CHECKPOINT=${BASE_OUTPUT_PATH}/${MODEL_VARIATION}/scanned_chkpt/0/items | ||
export RUN_NAME=unscann_llama3.1 | ||
# We defined path to unscanned checkpoint created in 1_test_llama3.1_8b.sh | ||
export UNSCANNED_CKPT_PATH=${BASE_OUTPUT_PATH}/${RUN_NAME}/checkpoints/0/items | ||
|
||
# converting MaxText orbax ckpt to HF | ||
|
||
JAX_PLATFORMS=cpu python3 MaxText/llama_mistral_mixtral_orbax_to_hf.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs \ | ||
load_parameters_path=gs://runner-maxtext-logs/2024-12-18-17-35/llama3.1-8b/scanned_chkpt/0/items run_name=convert_to_hf \ | ||
model_name=llama3.1-8b hf_model_path=/home/mohitkhatwani/maxtext/hf_llama3.1_new/ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. nit: Please update the hf_model_path name and the dates in the paths |
||
|
||
|
||
python MaxText/scratch_code/golden_llama3-70b_export.py --model-id /home/mohitkhatwani/maxtext/hf_llama3.1_new/ --output-path golden_data_new_llama3_1_8b.jsonl | ||
|
||
pushd MaxText/test_assets | ||
gcloud storage cp gs://maxtext-llama/Llama3_1_8B/golden-logits/golden_data_new_llama3_1_8b.jsonl . | ||
popd | ||
|
||
# comparing logits of the HF ckpt above | ||
|
||
python3 MaxText/tests/forward_pass_logit_checker.py MaxText/configs/base.yml base_output_directory=${BASE_OUTPUT_PATH} \ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It is best to load the converted model in HF and ensure the logits match. Please see an example here |
||
tokenizer_path=assets/tokenizer_llama3.tiktoken load_parameters_path=${UNSCANNED_CKPT_PATH} \ | ||
run_name=forward_pass_test per_device_batch_size=1 model_name=${MODEL_VARIATION} max_prefill_predict_length=3 max_target_length=4 \ | ||
dataset_type=synthetic dtype=float32 activations_in_float32=true matmul_precision=float32 async_checkpointing=false \ | ||
scan_layers=false --golden_logits_path="MaxText/test_assets/golden_data_new_llama3_1_8b.jsonl" |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nit: Please update the usage to Llama 3.1