-
Notifications
You must be signed in to change notification settings - Fork 309
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1026 from AI-Hypercomputer:lizhiyu/fix_moe
PiperOrigin-RevId: 710144566
- Loading branch information
Showing
1 changed file
with
249 additions
and
0 deletions.
There are no files selected for viewing
249 changes: 249 additions & 0 deletions
249
MaxText/scratch_code/mixtral-numerical-verification.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,249 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "bce1951a-8eef-4842-a70f-987b85a3240f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# installation\n", | ||
"!pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu\n", | ||
"!pip3 install tokenizers -U\n", | ||
"!pip3 install transformers -U" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "9769e847-d838-473d-8d32-1061b3e0f1c8", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# go to maxtext/MaxText for library import\n", | ||
"\n", | ||
"current_dir = %pwd\n", | ||
"working_dir = current_dir.replace(\"scratch_code\", \"\") \n", | ||
"%cd $working_dir" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "f1c108fc-d739-471d-9c64-c08151845f06", | ||
"metadata": {}, | ||
"source": [ | ||
"# one layer mixtral model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "cf8eee59-295e-41f4-8c09-d2177b410ddc", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pyconfig\n", | ||
"from transformers.models.mixtral.configuration_mixtral import MixtralConfig\n", | ||
"\n", | ||
"pyconfig.initialize(\n", | ||
" [None, \"configs/base.yml\"],\n", | ||
" base_emb_dim=4096,\n", | ||
" base_num_query_heads=32,\n", | ||
" base_num_kv_heads=8,\n", | ||
" base_mlp_dim=14336,\n", | ||
" base_num_decoder_layers=1, # 1 layer for simplicity\n", | ||
" head_dim=128,\n", | ||
" mlp_activations=[\"silu\",\"linear\"],\n", | ||
" vocab_size=32000,\n", | ||
" enable_dropout=False,\n", | ||
" logits_via_embedding=False,\n", | ||
" normalization_layer_epsilon=1.0e-5,\n", | ||
" num_experts=8,\n", | ||
" num_experts_per_tok=2,\n", | ||
" rope_max_timescale=1_000_000,\n", | ||
" decoder_block=\"mistral\",\n", | ||
" run_name=\"moe_test\",\n", | ||
" enable_checkpointing=False,\n", | ||
" dtype=\"bfloat16\",\n", | ||
" weight_dtype=\"bfloat16\",\n", | ||
" megablox=True, # or False\n", | ||
" max_target_length=4,\n", | ||
" max_prefill_predict_length=3,\n", | ||
" per_device_batch_size=1,\n", | ||
" capacity_factor=-1,\n", | ||
" scan_layers=False,\n", | ||
")\n", | ||
"config_maxtext = pyconfig.config\n", | ||
"\n", | ||
"config_hf = MixtralConfig(\n", | ||
" vocab_size=config_maxtext.vocab_size,\n", | ||
" hidden_size=config_maxtext.emb_dim,\n", | ||
" intermediate_size=config_maxtext.mlp_dim,\n", | ||
" num_hidden_layers=config_maxtext.num_decoder_layers, \n", | ||
" num_attention_heads=config_maxtext.base_num_query_heads,\n", | ||
" num_key_value_heads=config_maxtext.num_kv_heads,\n", | ||
" rms_norm_eps=config_maxtext.normalization_layer_epsilon,\n", | ||
" rope_theta=config_maxtext.rope_max_timescale,\n", | ||
" attention_dropout=0.0,\n", | ||
" num_experts_per_tok=config_maxtext.num_experts_per_tok,\n", | ||
" num_local_experts=config_maxtext.num_experts,\n", | ||
" tie_word_embeddings=config_maxtext.logits_via_embedding,\n", | ||
" output_router_logits=False,\n", | ||
" router_aux_loss_coef=0.001,\n", | ||
" router_jitter_noise=0.0,\n", | ||
" torch_dtype=\"bfloat16\",\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c94c857a-2efd-48f3-9669-aef926329cbd", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from transformers import AutoModelForCausalLM, set_seed\n", | ||
"import jax\n", | ||
"import jax.numpy as jnp\n", | ||
"from layers.models import Transformer\n", | ||
"import max_utils\n", | ||
"from jax.sharding import Mesh\n", | ||
"\n", | ||
"# ensure the same model initialization\n", | ||
"set_seed(0)\n", | ||
"\n", | ||
"model_hf = AutoModelForCausalLM.from_config(config_hf)\n", | ||
"\n", | ||
"devices_array = max_utils.create_device_mesh(config_maxtext)\n", | ||
"mesh = Mesh(devices_array, config_maxtext.mesh_axes)\n", | ||
"prng_key = jax.random.PRNGKey(1234)\n", | ||
"model_maxtext = Transformer(config=config_maxtext, mesh=mesh, quant=None)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "707df022-ec37-44b3-b203-5f938151c6ca", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"\n", | ||
"input_np = {\n", | ||
" 'inputs': np.random.randint(0, config_maxtext.vocab_size, size=(int(config_maxtext.per_device_batch_size), config_maxtext.max_target_length)),\n", | ||
" 'inputs_position': np.tile(np.arange(config_maxtext.max_target_length), (int(config_maxtext.per_device_batch_size), 1)),\n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "baca50fb-28f2-48b1-b4f5-0145ac6cfe38", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"state_maxtext = model_maxtext.init({'params': prng_key, 'dropout': prng_key, 'aqt': prng_key},\n", | ||
" jnp.array(input_np['inputs']),\n", | ||
" jnp.array(input_np['inputs_position']),\n", | ||
" enable_dropout=config_maxtext.enable_dropout,\n", | ||
" )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "74e8353b-b87a-4c5e-9a7c-138052249250", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import torch \n", | ||
"from flax import linen as nn\n", | ||
"\n", | ||
"state_map = {\n", | ||
" \"['params']['decoder']['decoder_norm']['scale'].value\": (\"model.norm.weight\", lambda x: x), \n", | ||
" \"['params']['decoder']['layers_0']['MoeBlock_0']['gate']['kernel'].value\": (\"model.layers.0.block_sparse_moe.gate.weight\", lambda x: x.T),\n", | ||
" \"['params']['decoder']['layers_0']['MoeBlock_0']['wi_0'].value\": (\"model.layers.0.block_sparse_moe.experts.<exp_idx>.w1.weight\", lambda *x: torch.stack(*x, dim=0).transpose(1,2)),\n", | ||
" \"['params']['decoder']['layers_0']['MoeBlock_0']['wi_1'].value\": (\"model.layers.0.block_sparse_moe.experts.<exp_idx>.w3.weight\", lambda *x: torch.stack(*x, dim=0).transpose(1,2)),\n", | ||
" \"['params']['decoder']['layers_0']['MoeBlock_0']['wo'].value\": (\"model.layers.0.block_sparse_moe.experts.<exp_idx>.w2.weight\", lambda *x: torch.stack(*x, dim=0).transpose(1,2)),\n", | ||
" \"['params']['decoder']['layers_0']['post_self_attention_layer_norm']['scale'].value\": (\"model.layers.0.post_attention_layernorm.weight\", lambda x: x),\n", | ||
" \"['params']['decoder']['layers_0']['pre_self_attention_layer_norm']['scale'].value\": (\"model.layers.0.input_layernorm.weight\", lambda x:x),\n", | ||
" \"['params']['decoder']['layers_0']['self_attention']['key']['kernel'].value\": (\"model.layers.0.self_attn.k_proj.weight\", lambda x:x.T.reshape(config_hf.hidden_size, config_hf.num_key_value_heads, config_maxtext.head_dim)),\n", | ||
" \"['params']['decoder']['layers_0']['self_attention']['out']['kernel'].value\": (\"model.layers.0.self_attn.o_proj.weight\", lambda x:x.T.reshape(config_hf.num_attention_heads, config_maxtext.head_dim, config_hf.hidden_size)),\n", | ||
" \"['params']['decoder']['layers_0']['self_attention']['query']['kernel'].value\": (\"model.layers.0.self_attn.q_proj.weight\", lambda x:x.T.reshape(config_hf.hidden_size, config_hf.num_attention_heads, config_maxtext.head_dim) / np.sqrt(config_maxtext.head_dim)),\n", | ||
" \"['params']['decoder']['layers_0']['self_attention']['value']['kernel'].value\": (\"model.layers.0.self_attn.v_proj.weight\", lambda x:x.T.reshape(config_hf.hidden_size, config_hf.num_key_value_heads, config_maxtext.head_dim)),\n", | ||
" \"['params']['decoder']['logits_dense']['kernel'].value\": (\"lm_head.weight\", lambda x:x.T),\n", | ||
" \"['params']['token_embedder']['embedding'].value\": (\"model.embed_tokens.weight\", lambda x:x),\n", | ||
" }\n", | ||
"\n", | ||
"state_hf = model_hf.state_dict()\n", | ||
"def map_fn(key_path, value):\n", | ||
" key_path_str = jax.tree_util.keystr(key_path)\n", | ||
" torch_key, transform_fn = state_map[key_path_str]\n", | ||
" if \"<exp_idx>\" in torch_key:\n", | ||
" torch_tensors = [state_hf[torch_key.replace(\"<exp_idx>\", str(i))] for i in range(config_hf.num_local_experts)]\n", | ||
" else:\n", | ||
" torch_tensors = state_hf[torch_key]\n", | ||
" \n", | ||
" torch_tensors = transform_fn(torch_tensors)\n", | ||
"\n", | ||
" assert value.shape == torch_tensors.shape, f\"{key_path_str}, {value.shape}, {torch_tensors.shape}\"\n", | ||
" new_value = jnp.array(torch_tensors.to(torch.float32).numpy(), dtype=value.dtype)\n", | ||
" if isinstance(value, nn.LogicallyPartitioned):\n", | ||
" new_value = value.replace_boxed(new_value)\n", | ||
" return new_value\n", | ||
"\n", | ||
"loaded_state_maxtext = jax.tree_util.tree_map_with_path(map_fn, state_maxtext)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d1f88708-c3a6-4b95-bc51-94adfebdf2aa", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"logits_hf = model_hf(torch.from_numpy(input_np['inputs'])).logits.detach()\n", | ||
"\n", | ||
"logits_maxtext = model_maxtext.apply(\n", | ||
" loaded_state_maxtext,\n", | ||
" input_np['inputs'],\n", | ||
" input_np['inputs_position'],\n", | ||
" enable_dropout=False,\n", | ||
" )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1207375a-b92c-4a8c-975a-21f2f027d91e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# currently, pass the following tests in both \"megablox=True\" & \"megablox=False capacity_factor=-1\"\n", | ||
"\n", | ||
"np.testing.assert_allclose(np.array(logits_maxtext), logits_hf.numpy(), rtol=1e-1, atol=1e-1)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |