-
Notifications
You must be signed in to change notification settings - Fork 309
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MoE] fix typo and add normalization for top_k_weights with notebook …
…for numerical verification
- Loading branch information
1 parent
c7c36cf
commit 28a634a
Showing
2 changed files
with
250 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
248 changes: 248 additions & 0 deletions
248
MaxText/scratch_code/mixtral-numerical-verification.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,248 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "bce1951a-8eef-4842-a70f-987b85a3240f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# installation\n", | ||
"!pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu\n", | ||
"!pip3 install tokenizers -U\n", | ||
"!pip3 install transformers -U" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "9769e847-d838-473d-8d32-1061b3e0f1c8", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# go to maxtext/MaxText for library import\n", | ||
"\n", | ||
"current_dir = %pwd\n", | ||
"working_dir = current_dir.replace(\"scratch_code\", \"\") \n", | ||
"%cd $working_dir" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "f1c108fc-d739-471d-9c64-c08151845f06", | ||
"metadata": {}, | ||
"source": [ | ||
"# one layer mixtral model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "cf8eee59-295e-41f4-8c09-d2177b410ddc", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pyconfig\n", | ||
"from transformers.models.mixtral.configuration_mixtral import MixtralConfig\n", | ||
"\n", | ||
"pyconfig.initialize(\n", | ||
" [None, \"configs/base.yml\"],\n", | ||
" base_emb_dim=4096,\n", | ||
" base_num_query_heads=32,\n", | ||
" base_num_kv_heads=8,\n", | ||
" base_mlp_dim=14336,\n", | ||
" base_num_decoder_layers=1, # 1 layer for simplicity\n", | ||
" head_dim=128,\n", | ||
" mlp_activations=[\"silu\",\"linear\"],\n", | ||
" vocab_size=32000,\n", | ||
" enable_dropout=False,\n", | ||
" logits_via_embedding=False,\n", | ||
" normalization_layer_epsilon=1.0e-5,\n", | ||
" num_experts=8,\n", | ||
" num_experts_per_tok=2,\n", | ||
" rope_max_timescale=1_000_000,\n", | ||
" decoder_block=\"mistral\",\n", | ||
" run_name=\"moe_test\",\n", | ||
" enable_checkpointing=False,\n", | ||
" dtype=\"bfloat16\",\n", | ||
" weight_dtype=\"bfloat16\",\n", | ||
" megablox=True, # or False\n", | ||
" max_target_length=4,\n", | ||
" per_device_batch_size=1,\n", | ||
" capacity_factor=-1,\n", | ||
" scan_layers=False,\n", | ||
")\n", | ||
"config_maxtext = pyconfig.config\n", | ||
"\n", | ||
"config_hf = MixtralConfig(\n", | ||
" vocab_size=config_maxtext.vocab_size,\n", | ||
" hidden_size=config_maxtext.emb_dim,\n", | ||
" intermediate_size=config_maxtext.mlp_dim,\n", | ||
" num_hidden_layers=config_maxtext.num_decoder_layers, \n", | ||
" num_attention_heads=config_maxtext.base_num_query_heads,\n", | ||
" num_key_value_heads=config_maxtext.num_kv_heads,\n", | ||
" rms_norm_eps=config_maxtext.normalization_layer_epsilon,\n", | ||
" rope_theta=config_maxtext.rope_max_timescale,\n", | ||
" attention_dropout=0.0,\n", | ||
" num_experts_per_tok=config_maxtext.num_experts_per_tok,\n", | ||
" num_local_experts=config_maxtext.num_experts,\n", | ||
" tie_word_embeddings=config_maxtext.logits_via_embedding,\n", | ||
" output_router_logits=False,\n", | ||
" router_aux_loss_coef=0.001,\n", | ||
" router_jitter_noise=0.0,\n", | ||
" torch_dtype=\"bfloat16\",\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c94c857a-2efd-48f3-9669-aef926329cbd", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from transformers import AutoModelForCausalLM, set_seed\n", | ||
"import jax\n", | ||
"import jax.numpy as jnp\n", | ||
"from layers.models import Transformer\n", | ||
"import max_utils\n", | ||
"from jax.sharding import Mesh\n", | ||
"\n", | ||
"# ensure the same model initialization\n", | ||
"set_seed(0)\n", | ||
"\n", | ||
"model_hf = AutoModelForCausalLM.from_config(config_hf)\n", | ||
"\n", | ||
"devices_array = max_utils.create_device_mesh(config_maxtext)\n", | ||
"mesh = Mesh(devices_array, config_maxtext.mesh_axes)\n", | ||
"prng_key = jax.random.PRNGKey(1234)\n", | ||
"model_maxtext = Transformer(config=config_maxtext, mesh=mesh, quant=None)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "707df022-ec37-44b3-b203-5f938151c6ca", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"\n", | ||
"input_np = {\n", | ||
" 'inputs': np.random.randint(0, config_maxtext.vocab_size, size=(int(config_maxtext.per_device_batch_size), config_maxtext.max_target_length)),\n", | ||
" 'inputs_position': np.tile(np.arange(config_maxtext.max_target_length), (int(config_maxtext.per_device_batch_size), 1)),\n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "baca50fb-28f2-48b1-b4f5-0145ac6cfe38", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"state_maxtext = model_maxtext.init({'params': prng_key, 'dropout': prng_key, 'aqt': prng_key},\n", | ||
" jnp.array(input_np['inputs']),\n", | ||
" jnp.array(input_np['inputs_position']),\n", | ||
" enable_dropout=config_maxtext.enable_dropout,\n", | ||
" )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "74e8353b-b87a-4c5e-9a7c-138052249250", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import torch \n", | ||
"from flax import linen as nn\n", | ||
"\n", | ||
"state_map = {\n", | ||
" \"['params']['decoder']['decoder_norm']['scale'].value\": (\"model.norm.weight\", lambda x: x), \n", | ||
" \"['params']['decoder']['layers_0']['MoeBlock_0']['gate']['kernel'].value\": (\"model.layers.0.block_sparse_moe.gate.weight\", lambda x: x.T),\n", | ||
" \"['params']['decoder']['layers_0']['MoeBlock_0']['wi_0'].value\": (\"model.layers.0.block_sparse_moe.experts.<exp_idx>.w1.weight\", lambda *x: torch.stack(*x, dim=0).transpose(1,2)),\n", | ||
" \"['params']['decoder']['layers_0']['MoeBlock_0']['wi_1'].value\": (\"model.layers.0.block_sparse_moe.experts.<exp_idx>.w3.weight\", lambda *x: torch.stack(*x, dim=0).transpose(1,2)),\n", | ||
" \"['params']['decoder']['layers_0']['MoeBlock_0']['wo'].value\": (\"model.layers.0.block_sparse_moe.experts.<exp_idx>.w2.weight\", lambda *x: torch.stack(*x, dim=0).transpose(1,2)),\n", | ||
" \"['params']['decoder']['layers_0']['post_self_attention_layer_norm']['scale'].value\": (\"model.layers.0.post_attention_layernorm.weight\", lambda x: x),\n", | ||
" \"['params']['decoder']['layers_0']['pre_self_attention_layer_norm']['scale'].value\": (\"model.layers.0.input_layernorm.weight\", lambda x:x),\n", | ||
" \"['params']['decoder']['layers_0']['self_attention']['key']['kernel'].value\": (\"model.layers.0.self_attn.k_proj.weight\", lambda x:x.T.reshape(config_hf.hidden_size, config_hf.num_key_value_heads, config_maxtext.head_dim)),\n", | ||
" \"['params']['decoder']['layers_0']['self_attention']['out']['kernel'].value\": (\"model.layers.0.self_attn.o_proj.weight\", lambda x:x.T.reshape(config_hf.num_attention_heads, config_maxtext.head_dim, config_hf.hidden_size)),\n", | ||
" \"['params']['decoder']['layers_0']['self_attention']['query']['kernel'].value\": (\"model.layers.0.self_attn.q_proj.weight\", lambda x:x.T.reshape(config_hf.hidden_size, config_hf.num_attention_heads, config_maxtext.head_dim) / np.sqrt(config_maxtext.head_dim)),\n", | ||
" \"['params']['decoder']['layers_0']['self_attention']['value']['kernel'].value\": (\"model.layers.0.self_attn.v_proj.weight\", lambda x:x.T.reshape(config_hf.hidden_size, config_hf.num_key_value_heads, config_maxtext.head_dim)),\n", | ||
" \"['params']['decoder']['logits_dense']['kernel'].value\": (\"lm_head.weight\", lambda x:x.T),\n", | ||
" \"['params']['token_embedder']['embedding'].value\": (\"model.embed_tokens.weight\", lambda x:x),\n", | ||
" }\n", | ||
"\n", | ||
"state_hf = model_hf.state_dict()\n", | ||
"def map_fn(key_path, value):\n", | ||
" key_path_str = jax.tree_util.keystr(key_path)\n", | ||
" torch_key, transform_fn = state_map[key_path_str]\n", | ||
" if \"<exp_idx>\" in torch_key:\n", | ||
" torch_tensors = [state_hf[torch_key.replace(\"<exp_idx>\", str(i))] for i in range(config_hf.num_local_experts)]\n", | ||
" else:\n", | ||
" torch_tensors = state_hf[torch_key]\n", | ||
" \n", | ||
" torch_tensors = transform_fn(torch_tensors)\n", | ||
"\n", | ||
" assert value.shape == torch_tensors.shape, f\"{key_path_str}, {value.shape}, {torch_tensors.shape}\"\n", | ||
" new_value = jnp.array(torch_tensors.to(torch.float32).numpy(), dtype=value.dtype)\n", | ||
" if isinstance(value, nn.LogicallyPartitioned):\n", | ||
" new_value = value.replace_boxed(new_value)\n", | ||
" return new_value\n", | ||
"\n", | ||
"loaded_state_maxtext = jax.tree_util.tree_map_with_path(map_fn, state_maxtext)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d1f88708-c3a6-4b95-bc51-94adfebdf2aa", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"logits_hf = model_hf(torch.from_numpy(input_np['inputs'])).logits.detach()\n", | ||
"\n", | ||
"logits_maxtext = model_maxtext.apply(\n", | ||
" loaded_state_maxtext,\n", | ||
" input_np['inputs'],\n", | ||
" input_np['inputs_position'],\n", | ||
" enable_dropout=False,\n", | ||
" )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1207375a-b92c-4a8c-975a-21f2f027d91e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# currently, pass the following tests in both \"megablox=True\" & \"megablox=False capacity_factor=-1\"\n", | ||
"\n", | ||
"np.testing.assert_allclose(np.array(logits_maxtext), logits_hf.numpy(), rtol=1e-1, atol=1e-1)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |