forked from polyusmart/Doctor-Recommendation
-
Notifications
You must be signed in to change notification settings - Fork 1
/
predict.py
78 lines (68 loc) · 2.83 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
import json
from collections import Counter
import random
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm, trange
from Modules.MLP import MLP
from utils.dataset import MulAttDataset
from utils.config import init_opts, train_opts, eval_opts, multihead_att_opts
parser = argparse.ArgumentParser('eval MUL-ATT model', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
init_opts(parser)
train_opts(parser)
eval_opts(parser)
multihead_att_opts(parser)
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.cuda.set_device(args.gpu)
print(f'Prediction: randome seed {args.seed}, experiment name: {args.name}, run on gpu {args.gpu}')
def main():
print(f'{args.name} start!')
print(f'Loadding embeddings from {args.embeddings_path}...')
with open(f'./{args.embeddings_path}/profile_embeddings.json', 'r', encoding='utf-8') as f:
profile_embeddings = json.load(f)
with open(f'./{args.embeddings_path}/q_embeddings.json', 'r', encoding='utf-8') as f:
query_embeddings = json.load(f)
with open(f'./{args.embeddings_path}/dialog_embeddings.json', 'r', encoding='utf-8') as f:
dialogue_embeddings = json.load(f)
print('Done')
print('Building testing dataset and dataloader...')
test_set = pd.read_csv(f'./dataset/test.csv', delimiter='\t', encoding='utf-8', dtype={'dr_id': str})
test_dataset = MulAttDataset(
'test', test_set, profile_embeddings, query_embeddings, dialogue_embeddings,
dr_dialog_sample=args.dr_dialog_sample, neg_sample=args.neg_sample, output=args.output_dir
)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4)
del test_set, test_dataset
print('Done')
model = MLP(
args.in_size,
args.hidden_size,
args.dropout,
args.head_num,
args.add_self_att_on
)
model_path = f'{args.output_dir}/ckpt/{args.eval_model}'
model.load_state_dict(torch.load(model_path))
if torch.cuda.is_available():
model = model.cuda()
model.eval()
print(f'{args.name} start prediction...')
with open(f'{args.output_dir}/test_{args.eval_model}_score.txt', 'w', encoding='utf-8') as score:
for features, labels in tqdm(test_dataloader):
with torch.no_grad():
if torch.cuda.is_available():
features = features.cuda()
labels = labels.cuda()
pred_scores = model(features, args.dr_dialog_sample)
for pred_score in pred_scores:
print(pred_score.cpu().detach().numpy().tolist()[0], file = score)
if __name__ == '__main__':
main()