forked from iamseancheney/USTC-CS-Courses-Resource
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
479 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -11,6 +11,8 @@ | |
* [课程目录](#课程目录) | ||
* [管理与投稿](#管理与投稿) | ||
* [投稿方式](#投稿方式) | ||
* [Fork](#fork) | ||
* [更新内容并PR](#更新内容并pr) | ||
* [投稿建议](#投稿建议) | ||
* [管理工作](#管理工作) | ||
* [管理要求](#管理要求) | ||
|
@@ -121,6 +123,7 @@ | |
|
||
## 投稿方式 | ||
|
||
### Fork | ||
* 发给管理员帮忙上传 | ||
|
||
* 用网页或者[桌面版](https://desktop.github.com/)直接操作,fork and pull request, | ||
|
@@ -146,8 +149,16 @@ echo "公选课/人工智障" >> .git/info/sparse-checkout #这里工作目录 | |
#只需记住的是 加入的目录应该在远程仓库存在,否则报错“error: Sparse checkout leaves no entry on the working directory” | ||
|
||
git pull origin master | ||
git remote add upstream [email protected]:mbinary/USTC-CS-Courses-Resource.git | ||
``` | ||
### 更新内容并PR | ||
>建议: 如果没有较大的改动, 或者在改动之前,可以删除掉以前 fork 的仓库 重新 fork | ||
* [使用网页操作](https://blog.csdn.net/huutu/article/details/51018317) | ||
* 命令行 | ||
```shell | ||
git fetch upstream/master | ||
git merge upstream/master | ||
``` | ||
|
||
|
||
## 投稿建议 | ||
* 由于 github 上不能直接上传大于 100mb 的文件,所以就不要上传太大的文件。可以存在云盘,然后将云盘链接发在这里。 | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
>写的一个简单的脚本实现 在 L 下的公式证明, 有兴趣的同学可以看看, 算是抛砖引玉吧 | ||
# system-L | ||
|
||
## Descripton | ||
it's a formal logic deduction based on system-L | ||
### symbols | ||
`~` , `->` (in the script, i use > to repr it) | ||
### rules | ||
The basic three axioms: | ||
* L1: `p->(q->p)` | ||
* L2: `(p->(q->r)) -> ((p->q)->(p->r))` | ||
* L3: `~q->~p -> (p->q)` | ||
|
||
### deduction | ||
{p,p->q} |- q | ||
|
||
you can read the professional [book](src/mathematical-logic.pdf) | ||
or click [here](https://en.wikipedia.org/wiki/Mathematical_logic) to see more details | ||
|
||
## Idea | ||
To prove one proposition: | ||
* Firstly, I use deduction theorem(演绎定理) to de-level the formula and finally get a prop varible or a prop in form of `~(...)`. let's mark it as p or ~p | ||
* Next, I create a set `garma` and fill it with some generated formulas using the three axioms(公理),some theorem and conclusions. | ||
* Then, I search p or ~p in `garma, or further, using modus ponent(MP) to deduct p or ~p. | ||
* Finally, if using mp can't prove it, I will use `Proof by contradiction`(反证法) to prove it. | ||
|
||
## Requirement | ||
python modules | ||
* sympy | ||
|
||
## Visual | ||
|
||
![](src/sys-L.png) | ||
|
||
## To do | ||
* 将证明过程对象化,便于处理,打印(英文版,中文版), | ||
* 其他连接词的转换 | ||
* 处理简单的, 有一定模式的自然语言, 形成命题推理 | ||
|
||
## Contact | ||
* mail: [email protected] | ||
* QQ : 414313516 |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.