Skip to content

0x7aF777/StreamBench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RealtimeStreamBenchmark

Experiment Environment Setup

Module path: script.
Description: Setup experiment environment, install Storm, Flink, Spark, Kafka, HDFS and Zookeeper.
Usage:
    1. Set ssh passwordless login experiment cluster;
    2. Update configureation file cluster-config.json to the role of each node in the cluster;
    3. Clone this repository to home directory of master node;
    4. Run python scripts\pull-updates.py to clone this repository to each node in the cluster;
    4. Run python scripts\install.py with different parameter to install softwares

Data generator

Module path: StreamBench/generator.
Description: This module defineds data generators for workloads. Parameters could be configured in configure files under resources folder.
Usage:
    1. go to module foler;
    2. execute command mvn clean package;
    3. get packaged jar file with dependencies -- generator-1.0-SNAPSHOT-jar-with-dependencies.jar;
    4. start generator: java -cp generator*.jar fi.aalto.dmg.generator.GeneratorClass (interval), interval is a parameter to control speed of generation;

Special case: For workload KMeans, we should generate real centoirds in generator class fi.aalto.dmg.generator.KMeansPoints, then generate test data. Detail information is in the source of this class.

Flink

Module path: StreamBench/flink.
Description: This module implements APIs of core module with Flink's built-in APIs. Parameters could be configured in file config.properties.
Usage:
    1. go to module foler;
    2. modify tage program-class in file pom.xml to specify the benchmark workload;
    3. execute command mvn clean package;
    3. get packaged jar file with dependencies -- flink-1.0-SNAPSHOT-jar-with-dependencies.jar;
    4. start flink cluster and submit workload job: /usr/local/flink/bin/flink run flink-1.0-SNAPSHOT-jar-with-dependencies.jar;

Output

Collect log files

The output of benchmark job is log files. As the job runs in a distributed system, we use help script to collect log files. python StreamBench/script/logs-collection.py flink flink.tar

Analysis logs

There are two script under statistic_script folder, latency.py and throughput.py Usage:

# extract latency log from original log
python latency.py extract origin.log latency.log
# combine several log files into one file
python latency.py combine output.log file1.log file2.log ...
# analysis latency log
python latency.log analysis latency.log
# All in one process command, you could put original logs under one folder and run this command to ayalysis 
python latency.py process original-log-folder

Notes

For other platform, the usage are similar to Flink.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published