-
Notifications
You must be signed in to change notification settings - Fork 0
/
lda_model.py
457 lines (361 loc) · 15.2 KB
/
lda_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# Copyright 2021 Yifei Ma
# with references from "sklearn.decomposition.LatentDirichletAllocation"
# with the following original authors:
# * Chyi-Kwei Yau (the said scikit-learn implementation)
# * Matthew D. Hoffman (original onlineldavb implementation)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, functools, warnings, torch, collections, dgl, io
import numpy as np, scipy as sp
try:
from functools import cached_property
except ImportError:
try:
from backports.cached_property import cached_property
except ImportError:
warnings.warn("cached_property not found - using property instead")
cached_property = property
class EdgeData:
def __init__(self, src_data, dst_data):
self.src_data = src_data
self.dst_data = dst_data
@property
def loglike(self):
return (self.src_data['Elog'] + self.dst_data['Elog']).logsumexp(1)
@property
def phi(self):
return (
self.src_data['Elog'] + self.dst_data['Elog'] - self.loglike.unsqueeze(1)
).exp()
@property
def expectation(self):
return (self.src_data['expectation'] * self.dst_data['expectation']).sum(1)
class _Dirichlet:
def __init__(self, prior, nphi, _chunksize=int(1e6)):
self.prior = prior
self.nphi = nphi
self.device = nphi.device
self._sum_by_parts = lambda map_fn: functools.reduce(torch.add, [
map_fn(slice(i, min(i+_chunksize, nphi.shape[1]))).sum(1)
for i in list(range(0, nphi.shape[1], _chunksize))
])
def _posterior(self, _ID=slice(None)):
return self.prior + self.nphi[:, _ID]
@cached_property
def posterior_sum(self):
return self.nphi.sum(1) + self.prior * self.nphi.shape[1]
def _Elog(self, _ID=slice(None)):
return torch.digamma(self._posterior(_ID)) - \
torch.digamma(self.posterior_sum.unsqueeze(1))
@cached_property
def loglike(self):
neg_evid = -self._sum_by_parts(
lambda s: (self.nphi[:, s] * self._Elog(s))
)
prior = torch.as_tensor(self.prior).to(self.nphi)
K = self.nphi.shape[1]
log_B_prior = torch.lgamma(prior) * K - torch.lgamma(prior * K)
log_B_posterior = self._sum_by_parts(
lambda s: torch.lgamma(self._posterior(s))
) - torch.lgamma(self.posterior_sum)
return neg_evid - log_B_prior + log_B_posterior
@cached_property
def n(self):
return self.nphi.sum(1)
@cached_property
def cdf(self):
cdf = self._posterior()
torch.cumsum(cdf, 1, out=cdf)
cdf /= cdf[:, -1:].clone()
return cdf
def _expectation(self, _ID=slice(None)):
expectation = self._posterior(_ID)
expectation /= self.posterior_sum.unsqueeze(1)
return expectation
@cached_property
def Bayesian_gap(self):
return 1. - self._sum_by_parts(lambda s: self._Elog(s).exp())
_cached_properties = ["posterior_sum", "loglike", "n", "cdf", "Bayesian_gap"]
def clear_cache(self):
for name in self._cached_properties:
try:
delattr(self, name)
except AttributeError:
pass
def update(self, new, _ID=slice(None), rho=1):
""" inplace: old * (1-rho) + new * rho """
self.clear_cache()
mean_change = (self.nphi[:, _ID] - new).abs().mean().tolist()
self.nphi *= (1 - rho)
self.nphi[:, _ID] += new * rho
return mean_change
class DocData(_Dirichlet):
""" nphi (n_docs by n_topics) """
def prepare_graph(self, G, key="Elog"):
G.nodes['doc'].data[key] = getattr(self, '_'+key)().to(G.device)
def update_from(self, G, mult):
new = G.nodes['doc'].data['nphi'] * mult
return self.update(new.to(self.device))
class _Distributed(collections.UserList):
""" split on dim=0 and store on multiple devices """
def __init__(self, prior, nphi):
self.prior = prior
self.nphi = nphi
super().__init__([_Dirichlet(self.prior, nphi) for nphi in self.nphi])
def split_device(self, other, dim=0):
split_sections = [x.shape[0] for x in self.nphi]
out = torch.split(other, split_sections, dim)
return [y.to(x.device) for x,y in zip(self.nphi, out)]
class WordData(_Distributed):
""" distributed nphi (n_topics by n_words), transpose to/from graph nodes data """
def prepare_graph(self, G, key="Elog"):
if '_ID' in G.nodes['word'].data:
_ID = G.nodes['word'].data['_ID']
else:
_ID = slice(None)
out = [getattr(part, '_'+key)(_ID).to(G.device) for part in self]
G.nodes['word'].data[key] = torch.cat(out).T
def update_from(self, G, mult, rho):
nphi = G.nodes['word'].data['nphi'].T * mult
if '_ID' in G.nodes['word'].data:
_ID = G.nodes['word'].data['_ID']
else:
_ID = slice(None)
mean_change = [x.update(y, _ID, rho)
for x, y in zip(self, self.split_device(nphi))]
return np.mean(mean_change)
class Gamma(collections.namedtuple('Gamma', "concentration, rate")):
""" articulate the difference between torch gamma and numpy gamma """
@property
def shape(self):
return self.concentration
@property
def scale(self):
return 1 / self.rate
def sample(self, shape, device):
return torch.distributions.gamma.Gamma(
torch.as_tensor(self.concentration, device=device),
torch.as_tensor(self.rate, device=device),
).sample(shape)
class LatentDirichletAllocation:
"""LDA model that works with a HeteroGraph with doc->word meta paths.
The model alters the attributes of G arbitrarily.
This is inspired by [1] and its corresponding scikit-learn implementation.
Inputs
---
* G: a template graph or an integer showing n_words
* n_components: latent feature dimension; automatically set priors if missing.
* prior: parameters in the Dirichlet prior; default to 1/n_components and 1/n_words
* rho: new_nphi = (1-rho)*old_nphi + rho*nphi; default to 1 for full gradients.
* mult: multiplier for nphi-update; a large value effectively disables prior.
* init: sklearn initializers (100.0, 100.0); the sample points concentrate around 1.0
* device_list: accelerate word_data updates.
Notes
---
Some differences between this and sklearn.decomposition.LatentDirichletAllocation:
* default word perplexity is normalized by training set instead of testing set.
References
---
[1] Matthew Hoffman, Francis Bach, David Blei. Online Learning for Latent
Dirichlet Allocation. Advances in Neural Information Processing Systems 23
(NIPS 2010).
[2] Reactive LDA Library blogpost by Yingjie Miao for a similar Gibbs model
"""
def __init__(
self, n_words, n_components,
prior=None,
rho=1,
mult={'doc': 1, 'word': 1},
init={'doc': (100., 100.), 'word': (100., 100.)},
device_list=['cpu'],
verbose=True,
):
self.n_words = n_words
self.n_components = n_components
if prior is None:
prior = {'doc': 1./n_components, 'word': 1./n_components}
self.prior = prior
self.rho = rho
self.mult = mult
self.init = init
assert not isinstance(device_list, str), "plz wrap devices in a list"
self.device_list = device_list[:n_components] # avoid edge cases
self.verbose = verbose
self._init_word_data()
def _init_word_data(self):
split_sections = np.diff(
np.linspace(0, self.n_components, len(self.device_list)+1).astype(int)
)
word_nphi = [
Gamma(*self.init['word']).sample((s, self.n_words), device)
for s, device in zip(split_sections, self.device_list)
]
self.word_data = WordData(self.prior['word'], word_nphi)
def _init_doc_data(self, n_docs, device):
doc_nphi = Gamma(*self.init['doc']).sample(
(n_docs, self.n_components), device)
return DocData(self.prior['doc'], doc_nphi)
def save(self, f):
for w in self.word_data:
w.clear_cache()
torch.save({
'prior': self.prior,
'rho': self.rho,
'mult': self.mult,
'init': self.init,
'word_data': [part.nphi for part in self.word_data],
}, f)
def _prepare_graph(self, G, doc_data, key="Elog"):
doc_data.prepare_graph(G, key)
self.word_data.prepare_graph(G, key)
def _e_step(self, G, doc_data=None, mean_change_tol=1e-3, max_iters=100):
"""_e_step implements doc data sampling until convergence or max_iters
"""
if doc_data is None:
doc_data = self._init_doc_data(G.num_nodes('doc'), G.device)
G_rev = G.reverse() # word -> doc
self.word_data.prepare_graph(G_rev)
for i in range(max_iters):
doc_data.prepare_graph(G_rev)
G_rev.update_all(
lambda edges: {'phi': EdgeData(edges.src, edges.dst).phi},
dgl.function.sum('phi', 'nphi')
)
mean_change = doc_data.update_from(G_rev, self.mult['doc'])
if mean_change < mean_change_tol:
break
if self.verbose:
print(f"e-step num_iters={i+1} with mean_change={mean_change:.4f}, "
f"perplexity={self.perplexity(G, doc_data):.4f}")
return doc_data
transform = _e_step
def predict(self, doc_data):
pred_scores = [
# d_exp @ w._expectation()
(lambda x: x @ w.nphi + x.sum(1, keepdims=True) * w.prior)
(d_exp / w.posterior_sum.unsqueeze(0))
for (d_exp, w) in zip(
self.word_data.split_device(doc_data._expectation(), dim=1),
self.word_data)
]
x = torch.zeros_like(pred_scores[0], device=doc_data.device)
for p in pred_scores:
x += p.to(x.device)
return x
def sample(self, doc_data, num_samples):
""" draw independent words and return the marginal probabilities,
i.e., the expectations in Dirichlet distributions.
"""
def fn(cdf):
u = torch.rand(cdf.shape[0], num_samples, device=cdf.device)
return torch.searchsorted(cdf, u).to(doc_data.device)
topic_ids = fn(doc_data.cdf)
word_ids = torch.cat([fn(part.cdf) for part in self.word_data])
ids = torch.gather(word_ids, 0, topic_ids) # pick components by topic_ids
# compute expectation scores on sampled ids
src_ids = torch.arange(
ids.shape[0], dtype=ids.dtype, device=ids.device
).reshape((-1, 1)).expand(ids.shape)
unique_ids, inverse_ids = torch.unique(ids, sorted=False, return_inverse=True)
G = dgl.heterograph({('doc','','word'): (src_ids.ravel(), inverse_ids.ravel())})
G.nodes['word'].data['_ID'] = unique_ids
self._prepare_graph(G, doc_data, "expectation")
G.apply_edges(lambda e: {'expectation': EdgeData(e.src, e.dst).expectation})
expectation = G.edata.pop('expectation').reshape(ids.shape)
return ids, expectation
def _m_step(self, G, doc_data):
"""_m_step implements word data sampling and stores word_z stats.
mean_change is in the sense of full graph with rho=1.
"""
G = G.clone()
self._prepare_graph(G, doc_data)
G.update_all(
lambda edges: {'phi': EdgeData(edges.src, edges.dst).phi},
dgl.function.sum('phi', 'nphi')
)
self._last_mean_change = self.word_data.update_from(
G, self.mult['word'], self.rho)
if self.verbose:
print(f"m-step mean_change={self._last_mean_change:.4f}, ", end="")
Bayesian_gap = np.mean([
part.Bayesian_gap.mean().tolist() for part in self.word_data
])
print(f"Bayesian_gap={Bayesian_gap:.4f}")
def partial_fit(self, G):
doc_data = self._e_step(G)
self._m_step(G, doc_data)
return self
def fit(self, G, mean_change_tol=1e-3, max_epochs=10):
for i in range(max_epochs):
if self.verbose:
print(f"epoch {i+1}, ", end="")
self.partial_fit(G)
if self._last_mean_change < mean_change_tol:
break
return self
def perplexity(self, G, doc_data=None):
"""ppl = exp{-sum[log(p(w1,...,wn|d))] / n}
Follows Eq (15) in Hoffman et al., 2010.
"""
if doc_data is None:
doc_data = self._e_step(G)
# compute E[log p(docs | theta, beta)]
G = G.clone()
self._prepare_graph(G, doc_data)
G.apply_edges(lambda edges: {'loglike': EdgeData(edges.src, edges.dst).loglike})
edge_elbo = (G.edata['loglike'].sum() / G.num_edges()).tolist()
if self.verbose:
print(f'neg_elbo phi: {-edge_elbo:.3f}', end=' ')
# compute E[log p(theta | alpha) - log q(theta | gamma)]
doc_elbo = (doc_data.loglike.sum() / doc_data.n.sum()).tolist()
if self.verbose:
print(f'theta: {-doc_elbo:.3f}', end=' ')
# compute E[log p(beta | eta) - log q(beta | lambda)]
# The denominator n for extrapolation perplexity is undefined.
# We use the train set, whereas sklearn uses the test set.
word_elbo = (
sum([part.loglike.sum().tolist() for part in self.word_data])
/ sum([part.n.sum().tolist() for part in self.word_data])
)
if self.verbose:
print(f'beta: {-word_elbo:.3f}')
ppl = np.exp(-edge_elbo - doc_elbo - word_elbo)
if G.num_edges()>0 and np.isnan(ppl):
warnings.warn("numerical issue in perplexity")
return ppl
def doc_subgraph(G, doc_ids):
sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1)
_, _, (block,) = sampler.sample(G.reverse(), {'doc': torch.as_tensor(doc_ids)})
B = dgl.DGLHeteroGraph(
block._graph, ['_', 'word', 'doc', '_'], block.etypes
).reverse()
B.nodes['word'].data['_ID'] = block.nodes['word'].data['_ID']
return B
if __name__ == '__main__':
print('Testing LatentDirichletAllocation ...')
G = dgl.heterograph({('doc', '', 'word'): [(0, 0), (1, 3)]}, {'doc': 2, 'word': 5})
model = LatentDirichletAllocation(n_words=5, n_components=10, verbose=False)
model.fit(G)
model.transform(G)
model.predict(model.transform(G))
if hasattr(torch, "searchsorted"):
model.sample(model.transform(G), 3)
model.perplexity(G)
for doc_id in range(2):
B = doc_subgraph(G, [doc_id])
model.partial_fit(B)
with io.BytesIO() as f:
model.save(f)
f.seek(0)
print(torch.load(f))
print('Testing LatentDirichletAllocation passed!')