-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_utils.py
40 lines (33 loc) · 1.29 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
import torch
def one_hotify(labels, pad=-1):
'''
cast label to one hot vector
'''
num_instances = len(labels)
if pad <= 0:
dim_embedding = np.max(labels) + 1 # zero-indexed assumed
else:
assert pad > 0, "result_dim for padding one hot embedding not set!"
dim_embedding = pad + 1
embeddings = np.zeros((num_instances, dim_embedding))
embeddings[np.arange(num_instances), labels] = 1
return embeddings
def pre_process(dataset, prog_args):
"""
diffpool specific data partition, pre-process and shuffling
"""
if prog_args.data_mode != "default":
print("overwrite node attributes with DiffPool's preprocess setting")
if prog_args.data_mode == 'id':
for g, _ in dataset:
id_list = np.arange(g.number_of_nodes())
g.ndata['feat'] = one_hotify(id_list, pad=dataset.max_num_node)
elif prog_args.data_mode == 'deg-num':
for g, _ in dataset:
g.ndata['feat'] = np.expand_dims(g.in_degrees(), axis=1)
elif prog_args.data_mode == 'deg':
for g in dataset:
degs = list(g.in_degrees())
degs_one_hot = one_hotify(degs, pad=dataset.max_degrees)
g.ndata['feat'] = degs_one_hot