-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
55 lines (43 loc) · 2.16 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import torch.nn as nn
import dgl.function as fn
import torch.nn.functional as F
class PGNN_layer(nn.Module):
def __init__(self, input_dim, output_dim):
super(PGNN_layer, self).__init__()
self.input_dim = input_dim
self.linear_hidden_u = nn.Linear(input_dim, output_dim)
self.linear_hidden_v = nn.Linear(input_dim, output_dim)
self.linear_out_position = nn.Linear(output_dim, 1)
self.act = nn.ReLU()
def forward(self, graph, feature, anchor_eid, dists_max):
with graph.local_scope():
u_feat = self.linear_hidden_u(feature)
v_feat = self.linear_hidden_v(feature)
graph.srcdata.update({'u_feat': u_feat})
graph.dstdata.update({'v_feat': v_feat})
graph.apply_edges(fn.u_mul_e('u_feat', 'sp_dist', 'u_message'))
graph.apply_edges(fn.v_add_e('v_feat', 'u_message', 'message'))
messages = torch.index_select(graph.edata['message'], 0,
torch.LongTensor(anchor_eid).to(feature.device))
messages = messages.reshape(dists_max.shape[0], dists_max.shape[1], messages.shape[-1])
messages = self.act(messages) # n*m*d
out_position = self.linear_out_position(messages).squeeze(-1) # n*m_out
out_structure = torch.mean(messages, dim=1) # n*d
return out_position, out_structure
class PGNN(nn.Module):
def __init__(self, input_dim, feature_dim=32, dropout=0.5):
super(PGNN, self).__init__()
self.dropout = nn.Dropout(dropout)
self.linear_pre = nn.Linear(input_dim, feature_dim)
self.conv_first = PGNN_layer(feature_dim, feature_dim)
self.conv_out = PGNN_layer(feature_dim, feature_dim)
def forward(self, data):
x = data['graph'].ndata['feat']
graph = data['graph']
x = self.linear_pre(x)
x_position, x = self.conv_first(graph, x, data['anchor_eid'], data['dists_max'])
x = self.dropout(x)
x_position, x = self.conv_out(graph, x, data['anchor_eid'], data['dists_max'])
x_position = F.normalize(x_position, p=2, dim=-1)
return x_position