-
Notifications
You must be signed in to change notification settings - Fork 0
/
gcn_concat.py
197 lines (174 loc) · 6.31 KB
/
gcn_concat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
"""
Semi-Supervised Classification with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1609.02907
Code: https://github.com/tkipf/gcn
GCN with batch processing
"""
import argparse
import numpy as np
import time
import mxnet as mx
from mxnet import gluon
import dgl
import dgl.function as fn
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
class GCNLayer(gluon.Block):
def __init__(self,
g,
out_feats,
activation,
dropout):
super(GCNLayer, self).__init__()
self.g = g
self.dense = gluon.nn.Dense(out_feats, activation)
self.dropout = dropout
def forward(self, h):
self.g.ndata['h'] = h * self.g.ndata['out_norm']
self.g.update_all(fn.copy_src(src='h', out='m'),
fn.sum(msg='m', out='accum'))
accum = self.g.ndata.pop('accum')
accum = self.dense(accum * self.g.ndata['in_norm'])
if self.dropout:
accum = mx.nd.Dropout(accum, p=self.dropout)
h = self.g.ndata.pop('h')
h = mx.nd.concat(h / self.g.ndata['out_norm'], accum, dim=1)
return h
class GCN(gluon.Block):
def __init__(self,
g,
n_hidden,
n_classes,
n_layers,
activation,
dropout):
super(GCN, self).__init__()
self.inp_layer = gluon.nn.Dense(n_hidden, activation)
self.dropout = dropout
self.layers = gluon.nn.Sequential()
for i in range(n_layers):
self.layers.add(GCNLayer(g, n_hidden, activation, dropout))
self.out_layer = gluon.nn.Dense(n_classes)
def forward(self, features):
emb_inp = [features, self.inp_layer(features)]
if self.dropout:
emb_inp[-1] = mx.nd.Dropout(emb_inp[-1], p=self.dropout)
h = mx.nd.concat(*emb_inp, dim=1)
for layer in self.layers:
h = layer(h)
h = self.out_layer(h)
return h
def evaluate(model, features, labels, mask):
pred = model(features).argmax(axis=1)
accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar()
return accuracy.asscalar()
def main(args):
# load and preprocess dataset
if args.dataset == 'cora':
data = CoraGraphDataset()
elif args.dataset == 'citeseer':
data = CiteseerGraphDataset()
elif args.dataset == 'pubmed':
data = PubmedGraphDataset()
else:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
g = data[0]
if args.gpu < 0:
cuda = False
ctx = mx.cpu(0)
else:
cuda = True
ctx = mx.gpu(args.gpu)
g = g.to(ctx)
features = g.ndata['feat']
labels = mx.nd.array(g.ndata['label'], dtype="float32", ctx=ctx)
train_mask = g.ndata['train_mask']
val_mask = g.ndata['val_mask']
test_mask = g.ndata['test_mask']
in_feats = features.shape[1]
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
print("""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().asscalar(),
val_mask.sum().asscalar(),
test_mask.sum().asscalar()))
# add self loop
if args.self_loop:
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
# normalization
in_degs = g.in_degrees().astype('float32')
out_degs = g.out_degrees().astype('float32')
in_norm = mx.nd.power(in_degs, -0.5)
out_norm = mx.nd.power(out_degs, -0.5)
if cuda:
in_norm = in_norm.as_in_context(ctx)
out_norm = out_norm.as_in_context(ctx)
g.ndata['in_norm'] = mx.nd.expand_dims(in_norm, 1)
g.ndata['out_norm'] = mx.nd.expand_dims(out_norm, 1)
model = GCN(g,
args.n_hidden,
n_classes,
args.n_layers,
'relu',
args.dropout,
)
model.initialize(ctx=ctx)
n_train_samples = train_mask.sum().asscalar()
loss_fcn = gluon.loss.SoftmaxCELoss()
# use optimizer
print(model.collect_params())
trainer = gluon.Trainer(model.collect_params(), 'adam',
{'learning_rate': args.lr, 'wd': args.weight_decay})
# initialize graph
dur = []
for epoch in range(args.n_epochs):
if epoch >= 3:
t0 = time.time()
# forward
with mx.autograd.record():
pred = model(features)
loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
loss = loss.sum() / n_train_samples
loss.backward()
trainer.step(batch_size=1)
if epoch >= 3:
dur.append(time.time() - t0)
acc = evaluate(model, features, labels, val_mask)
print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
"ETputs(KTEPS) {:.2f}". format(
epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000))
# test set accuracy
acc = evaluate(model, features, labels, test_mask)
print("Test accuracy {:.2%}".format(acc))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GCN')
register_data_args(parser)
parser.add_argument("--dropout", type=float, default=0.5,
help="dropout probability")
parser.add_argument("--gpu", type=int, default=-1,
help="gpu")
parser.add_argument("--lr", type=float, default=1e-2,
help="learning rate")
parser.add_argument("--n-epochs", type=int, default=200,
help="number of training epochs")
parser.add_argument("--n-hidden", type=int, default=16,
help="number of hidden gcn units")
parser.add_argument("--n-layers", type=int, default=1,
help="number of hidden gcn layers")
parser.add_argument("--normalization",
choices=['sym','left'], default=None,
help="graph normalization types (default=None)")
parser.add_argument("--self-loop", action='store_true',
help="graph self-loop (default=False)")
parser.add_argument("--weight-decay", type=float, default=5e-4,
help="Weight for L2 loss")
args = parser.parse_args()
print(args)
main(args)