-
Notifications
You must be signed in to change notification settings - Fork 4
/
engine_finetune.py
216 lines (169 loc) · 8.02 KB
/
engine_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (c) Zhisheng Zheng, The University of Texas at Austin.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# Audio-MAE: https://github.com/facebookresearch/AudioMAE
# --------------------------------------------------------
import math
import sys
from typing import Iterable, Optional
import numpy as np
import torch
import torch.nn.functional as F
from timm.data import Mixup
from timm.utils import accuracy
import utils.misc as misc
import utils.lr_sched as lr_sched
from utils.stat import calculate_stats, concat_all_gather
def train_one_epoch(
model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn: Optional[Mixup] = None, log_writer=None, args=None
):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 500
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, (batch) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
# samples = samples.to(device, non_blocking=True)
# targets = targets.to(device, non_blocking=True)
waveforms, reverbs = batch[0], batch[1]
targets, spaital_targets = batch[2], batch[3]
targets = targets.to(device, non_blocking=True)
distance = spaital_targets['distance'].long().to(device, non_blocking=True)
azimuth = spaital_targets['azimuth'].long().to(device, non_blocking=True)
elevation = spaital_targets['elevation'].long().to(device, non_blocking=True)
# with torch.cuda.amp.autocast():
outputs = model(waveforms, reverbs, mask_t_prob=args.mask_t_prob, mask_f_prob=args.mask_f_prob)
loss1 = criterion(outputs[0], targets)
loss2 = F.cross_entropy(outputs[1], distance)
loss3 = F.cross_entropy(outputs[2], azimuth)
loss4 = F.cross_entropy(outputs[3], elevation)
# loss = loss1
loss = 1250 * loss1 + 1 * loss2 + 2 * (loss3 + loss4)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=False,
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', max_lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, dist_eval=False):
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
outputs = []
targets = []
vids = []
all_distance_preds = []
all_distances = []
doa_dists = []
for batch in metric_logger.log_every(data_loader, 300, header):
waveforms, reverbs = batch[0], batch[1]
target, spaital_targets = batch[2], batch[3]
target = target.to(device, non_blocking=True)
# compute output
output = model(waveforms, reverbs)
# remark:
# 1. use concat_all_gather and --dist_eval for faster eval by distributed load over gpus
# 2. otherwise comment concat_all_gather and remove --dist_eval one every gpu
if dist_eval:
cls_output = concat_all_gather(output[0].detach())
target = concat_all_gather(target)
outputs.append(cls_output)
targets.append(target)
all_distances.append(spaital_targets['distance'].numpy())
all_distance_preds.append(torch.argmax(output[1], dim=1).detach().cpu().numpy())
az_pred = torch.argmax(output[2], dim=1).detach().cpu().numpy()
ele_pred = torch.argmax(output[3], dim=1).detach().cpu().numpy()
az_gt = spaital_targets['azimuth'].long().numpy()
ele_gt = spaital_targets['elevation'].long().numpy()
doa_dist = distance_between_spherical_coordinates_rad(az_gt, ele_gt, az_pred, ele_pred)
doa_dists.append(doa_dist)
outputs = torch.cat(outputs).cpu().numpy()
targets = torch.cat(targets).cpu().numpy()
vids = [j for sub in vids for j in sub]
# np.save('inf_output.npy', {'vids':vids, 'embs_527':outputs, 'targets':targets})
stats = calculate_stats(outputs, targets)
# AP = [stat['AP'] for stat in stats]
mAP = np.mean([stat['AP'] for stat in stats])
print("mAP: {:.6f}".format(mAP))
all_distance_preds = np.concatenate(all_distance_preds)
all_distances = np.concatenate(all_distances)
doa_dists = np.concatenate(doa_dists)
total_samples = len(all_distances)
spatial_outputs = []
distance_correct = np.sum([1 for truth, pred in zip(all_distances, all_distance_preds) if abs(truth - pred) <= 1])
spatial_outputs.append(distance_correct)
threshold = 20
doa_angular_error = np.sum(doa_dists)
doa_error = np.sum(doa_dists > threshold) #
spatial_outputs.append(doa_error)
spatial_outputs.append(doa_angular_error)
if dist_eval:
spatial_outputs = torch.tensor(spatial_outputs).to(device)
torch.distributed.all_reduce(spatial_outputs, op=torch.distributed.ReduceOp.SUM)
total_samples = torch.tensor(total_samples).to(device)
torch.distributed.all_reduce(total_samples, op=torch.distributed.ReduceOp.SUM)
spatial_outputs = spatial_outputs.cpu().numpy()
total_samples = total_samples.cpu().numpy()
return {
"mAP": mAP,
"distance_accuracy": spatial_outputs[0] / total_samples,
"doa_error": spatial_outputs[1] / total_samples,
"doa_angular_error": spatial_outputs[2] / total_samples
}
def distance_between_spherical_coordinates_rad(az1, ele1, az2, ele2):
"""
Angular distance between two spherical coordinates
MORE: https://en.wikipedia.org/wiki/Great-circle_distance
:return: angular distance in degrees
"""
#NOTE: [0, 180] --> [0, +180]; [+180, +360] --> [-180, 0]
az1[az1 > 180] -= 360
az2[az2 > 180] -= 360
az1 = az1 * np.pi / 180.
az2 = az2 * np.pi / 180.
ele1 = (ele1 - 90) * np.pi / 180.
ele2 = (ele2 - 90) * np.pi / 180.
dist = np.sin(ele1) * np.sin(ele2) + np.cos(ele1) * np.cos(ele2) * np.cos(np.abs(az1 - az2))
# Making sure the dist values are in -1 to 1 range, else np.arccos kills the job
dist = np.clip(dist, -1, 1)
dist = np.arccos(dist) * 180 / np.pi
return dist