-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
120 lines (96 loc) · 4.55 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
import numpy as np
from mlp import MLP
class RolloutBuffer:
def __init__(self):
self.states = []
self.actions = []
self.rewards = []
self.next_states = []
self.dones = []
def clear(self):
del self.states[:]
del self.actions[:]
del self.rewards[:]
del self.next_states[:]
del self.dones[:]
class Agent:
def __init__(self,
state_dim,
hidden_dim,
action_dim,
lmbda=0.90,
gamma=0.90,
eps_clip=0.2,
K_epochs=10,
lr_actor=1e-4,
lr_critic=1e-4,
device='cpu',
model_path='./checkpoint/'):
self.state_dim = state_dim
self.action_dim = action_dim
self.lmbda = lmbda
self.gamma = gamma
self.eps_clip = eps_clip
self.K_epochs = K_epochs
self.lr_actor = lr_actor
self.lr_critic = lr_critic
self.buffer = RolloutBuffer()
self.device = device
self.model_path = model_path
self.actor = MLP(state_dim=state_dim, hidden_dim=hidden_dim, out_dim=action_dim).to(device)
self.critic = MLP(state_dim=state_dim, hidden_dim=hidden_dim, out_dim=1).to(device)
self.actor_optim = torch.optim.Adam(self.actor.parameters(), lr=self.lr_actor)
self.critic_optim = torch.optim.Adam(self.critic.parameters(), lr=self.lr_critic)
self.mse = torch.nn.MSELoss()
def take_action(self, state):
state = torch.tensor(state, dtype=torch.float, device=self.device)
state = state.unsqueeze(0) # [1, state_dim]
actor_out = self.actor(state)
action_dist = torch.softmax(actor_out, dim=-1)
action_dist = torch.distributions.Categorical(action_dist)
action = action_dist.sample()
# debug
self.entropy = action_dist.entropy().item()
self.value = self.critic(state).item()
return action.item()
def update(self):
# solve extremely low
states = torch.tensor(np.array(self.buffer.states), dtype=torch.float).reshape(-1, self.state_dim).to(self.device)
actions = torch.tensor(np.array(self.buffer.actions), dtype=torch.int64).reshape(-1, 1).to(self.device)
rewards = torch.tensor(np.array(self.buffer.rewards), dtype=torch.float).reshape(-1, 1).to(self.device)
next_states = torch.tensor(np.array(self.buffer.next_states), dtype=torch.float).reshape(-1, self.state_dim).to(self.device)
dones = torch.tensor(np.array(self.buffer.dones), dtype=torch.float).reshape(-1, 1).to(self.device)
td_target = rewards + self.gamma * self.critic(next_states) * (1 - dones)
td_delta = td_target - self.critic(states)
advantage = 0
advantage_list = []
td_delta = td_delta.detach().cpu().numpy()
for delta in td_delta[::-1]:
advantage = delta + self.gamma * self.lmbda * advantage
advantage_list.append(advantage)
advantage_list.reverse()
advantage_list = torch.tensor(np.array(advantage_list), dtype=torch.float).to(self.device)
old_log_probs = torch.log(torch.softmax(self.actor(states), dim=-1).gather(-1, actions)).detach()
for _ in range(self.K_epochs):
log_probs = torch.log(torch.softmax(self.actor(states), dim=-1).gather(-1, actions))
ratio = torch.exp(log_probs - old_log_probs)
surr1 = ratio * advantage_list
surr2 = torch.clamp(ratio, 1-self.eps_clip, 1+self.eps_clip) * advantage_list
actor_loss = torch.mean(-torch.min(surr1, surr2))
critic_loss = torch.mean(
self.mse(self.critic(states), td_target.detach())
)
self.actor_optim.zero_grad()
self.critic_optim.zero_grad()
actor_loss.backward()
critic_loss.backward()
self.actor_optim.step()
self.critic_optim.step()
self.buffer.clear()
def save(self):
torch.save(self.actor.state_dict(), self.model_path+'actor.pt')
torch.save(self.critic.state_dict(), self.model_path+'critic.pt')
def load(self):
self.actor.load_state_dict(torch.load(self.model_path+'actor.pt', map_location=lambda storage, loc: storage))
self.critic.load_state_dict(torch.load(self.model_path+'critic.pt', map_location=lambda storage, loc: storage))