[ALGORITHM]
We provide config files to reproduce the object detection results in the ECCV 2020 Spotlight paper for Side-Aware Boundary Localization for More Precise Object Detection.
@inproceedings{Wang_2020_ECCV,
title = {Side-Aware Boundary Localization for More Precise Object Detection},
author = {Jiaqi Wang and Wenwei Zhang and Yuhang Cao and Kai Chen and Jiangmiao Pang and Tao Gong and Jianping Shi and Chen Change Loy and Dahua Lin},
booktitle = {ECCV},
year = {2020}
}
The results on COCO 2017 val is shown in the below table. (results on test-dev are usually slightly higher than val). Single-scale testing (1333x800) is adopted in all results.
Method | Backbone | Lr schd | ms-train | box AP | Config | Download |
---|---|---|---|---|---|---|
SABL Faster R-CNN | R-50-FPN | 1x | N | 39.9 | config | model | log |
SABL Faster R-CNN | R-101-FPN | 1x | N | 41.7 | config | model | log |
SABL Cascade R-CNN | R-50-FPN | 1x | N | 41.6 | config | model | log |
SABL Cascade R-CNN | R-101-FPN | 1x | N | 43.0 | config | model | log |
Method | Backbone | GN | Lr schd | ms-train | box AP | Config | Download |
---|---|---|---|---|---|---|---|
SABL RetinaNet | R-50-FPN | N | 1x | N | 37.7 | config | model | log |
SABL RetinaNet | R-50-FPN | Y | 1x | N | 38.8 | config | model | log |
SABL RetinaNet | R-101-FPN | N | 1x | N | 39.7 | config | model | log |
SABL RetinaNet | R-101-FPN | Y | 1x | N | 40.5 | config | model | log |
SABL RetinaNet | R-101-FPN | Y | 2x | Y (640~800) | 42.9 | config | model | log |
SABL RetinaNet | R-101-FPN | Y | 2x | Y (480~960) | 43.6 | config | model | log |