forked from iamzoltan/pyERA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex_som_color_quantization.py
128 lines (107 loc) · 5.36 KB
/
ex_som_color_quantization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/python
## Massimiliano Patacchiola, Plymouth University 2016
#
# Color quantization reduces the number of colors used in an image;
# this is important for displaying images on devices that support a limited number of colors
# and for efficiently compressing certain kinds of images [https://en.wikipedia.org/wiki/Quantization_(image_processing)]
#
# In this example an image is passed as input. A batch of pixel is sampled and given as dataset to
# a Self-Organizing Map (SOM). The SOM will find the best colour vectors representing the image.
# The idea is to describe the same image with a lower number of colors. If the SOM has size 4
# then the resulting number of pixel used will be 4*4 = 16. In comparison the total possible
# combination of colours in the RGB format is 255*255*255 = 16,581,375
# To get the total number of colors in an image it is possible to use the command:
# identify -verbose -unique image_name.jpg
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from PIL import Image
import os
#It requires the pyERA library
from pyERA.som import Som
from pyERA.utils import ExponentialDecay
from pyERA.utils import LinearDecay
def main():
#Variables to play with
som_size = 4
batch_size = 32
tot_epoch = 200
image_name = "chameleon.jpg" #the file must be in the "./input" folder
#Set to True if you want to save the SOM images inside a folder.
SAVE_IMAGE = True
output_path = "./output/" #Change this path to save in a different forlder
if not os.path.exists(output_path):
os.makedirs(output_path)
img_original = Image.open("./input/" + image_name)
img_input_matrix = np.asarray(img_original, dtype=np.float32)
img_rows = img_input_matrix.shape[0]
img_cols = img_input_matrix.shape[1]
#Init the SOM
my_som = Som(matrix_size=som_size, input_size=3, low=0, high=255, round_values=True)
#Init the parameters
my_learning_rate = ExponentialDecay(starter_value=0.5, decay_step=10, decay_rate=0.8, staircase=True)
my_radius = ExponentialDecay(starter_value=np.rint(2.0), decay_step=10, decay_rate=0.5, staircase=True)
#my_radius = LinearDecay(starter_value=30, decay_rate=0.02, allow_negative=False)
#Starting the Learning
for epoch in range(1, tot_epoch):
#Iterates the elements in img_output_matrix and
#assign the closest value contained in SOM
img_output_matrix = np.zeros((img_rows, img_cols, 3))
#Iterates through the original image and find the BMU for
#each single pixel.
for row in range (0, img_rows):
for col in range(0, img_cols):
input_vector = np.array(img_input_matrix[row, col, :])
bmu_index = my_som.return_BMU_index(input_vector)
bmu_weights = my_som.get_unit_weights(bmu_index[0], bmu_index[1])
img_output_matrix[row, col, :] = (bmu_weights - 255) * -1 #renormalise to show the right colours
#Saving the image associated with the SOM weights
if(SAVE_IMAGE == True):
#Saving the image
fig = plt.figure()
a=fig.add_subplot(1,2,1)
imgplot = plt.imshow(img_original)
plt.axis("off")
b=fig.add_subplot(1,2,2)
img_output = np.rint(img_output_matrix).astype(np.uint8)
imgplot = plt.imshow(img_output)
plt.axis("off")
plt.savefig(output_path + str(epoch) + ".png", dpi=200, facecolor='black')
plt.close('all')
#Updating learning rate and radius
learning_rate = my_learning_rate.return_decayed_value(global_step=epoch)
radius = my_radius.return_decayed_value(global_step=epoch)
#Generating input vectors from random sampling
input_vector_list = list()
for i in range(0, batch_size):
row_index = np.random.randint(img_rows)
col_index = np.random.randint(img_cols)
input_vector = np.array(img_input_matrix[row_index, col_index, :])
input_vector_list.append(input_vector)
#Learning step (batch learning)
my_som.training_batch_step(input_vector_list, learning_rate=learning_rate, radius=radius, weighted_distance=True)
#Learning step
#my_som.training_single_step(input_vector, units_list=bmu_neighborhood_list, learning_rate=learning_rate, radius=radius, weighted_distance=False)
my_som.training_batch_step(input_vector_list, learning_rate=learning_rate, radius=radius, weighted_distance=True)
print("")
print("Epoch: " + str(epoch))
print("Learning Rate: " + str(learning_rate))
print("Radius: " + str(radius))
print("Input vector: " + str(input_vector))
print("BMU index: " + str(bmu_index))
print("BMU weights: " + str(bmu_weights))
#Saving the network
file_name = output_path + "som_color_quantization.npz"
print("Saving the network in: " + str(file_name))
my_som.save(path=output_path, name="som_color_quantization")
#Saving the final image
img_output = ((img_output_matrix- 255) * -1 ).astype(np.uint8)
img_to_save = Image.fromarray(img_output, "RGB")
img_to_save.save(output_path + image_name)
#Showing the SOM weights
#img = np.rint(my_som.return_weights_matrix())
#plt.axis("off")
#plt.imshow(img)
#plt.show()
if __name__ == "__main__":
main()