-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_goemotions.py
290 lines (241 loc) · 11.1 KB
/
run_goemotions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import argparse
import json
import logging
import os
import glob
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from tqdm import tqdm, trange
from attrdict import AttrDict
from transformers import (
BertConfig,
BertTokenizer,
AdamW,
get_linear_schedule_with_warmup
)
from model import BertForMultiLabelClassification
from utils import (
init_logger,
set_seed,
compute_metrics
)
from data_loader import (
load_and_cache_examples,
GoEmotionsProcessor
)
logger = logging.getLogger(__name__)
def train(args,
model,
tokenizer,
train_dataset,
dev_dataset=None,
test_dataset=None):
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=int(t_total * args.warmup_proportion),
num_training_steps=t_total
)
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Total train batch size = %d", args.train_batch_size)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
logger.info(" Logging steps = %d", args.logging_steps)
logger.info(" Save steps = %d", args.save_steps)
global_step = 0
tr_loss = 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch")
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"labels": batch[3]
}
outputs = model(**inputs)
loss = outputs[0]
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0 or (
len(train_dataloader) <= args.gradient_accumulation_steps
and (step + 1) == len(train_dataloader)
):
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step()
model.zero_grad()
global_step += 1
if args.logging_steps > 0 and global_step % args.logging_steps == 0:
if args.evaluate_test_during_training:
evaluate(args, model, test_dataset, "test", global_step)
else:
evaluate(args, model, dev_dataset, "dev", global_step)
if args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
)
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to {}".format(output_dir))
if args.save_optimizer:
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to {}".format(output_dir))
if args.max_steps > 0 and global_step > args.max_steps:
break
if args.max_steps > 0 and global_step > args.max_steps:
break
return global_step, tr_loss / global_step
def evaluate(args, model, eval_dataset, mode, global_step=None):
results = {}
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
if global_step != None:
logger.info("***** Running evaluation on {} dataset ({} step) *****".format(mode, global_step))
else:
logger.info("***** Running evaluation on {} dataset *****".format(mode))
logger.info(" Num examples = {}".format(len(eval_dataset)))
logger.info(" Eval Batch size = {}".format(args.eval_batch_size))
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"labels": batch[3]
}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = 1 / (1 + np.exp(-logits.detach().cpu().numpy())) # Sigmoid
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, 1 / (1 + np.exp(-logits.detach().cpu().numpy())), axis=0) # Sigmoid
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
results = {
"loss": eval_loss
}
preds[preds > args.threshold] = 1
preds[preds <= args.threshold] = 0
result = compute_metrics(out_label_ids, preds)
results.update(result)
output_dir = os.path.join(args.output_dir, mode)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_eval_file = os.path.join(output_dir, "{}-{}.txt".format(mode, global_step) if global_step else "{}.txt".format(mode))
with open(output_eval_file, "w") as f_w:
logger.info("***** Eval results on {} dataset *****".format(mode))
for key in sorted(results.keys()):
logger.info(" {} = {}".format(key, str(results[key])))
f_w.write(" {} = {}\n".format(key, str(results[key])))
return results
def main(cli_args):
# Read from config file and make args
config_filename = "{}.json".format(cli_args.taxonomy)
with open(os.path.join("config", config_filename)) as f:
args = AttrDict(json.load(f))
logger.info("Training/evaluation parameters {}".format(args))
args.output_dir = os.path.join(args.ckpt_dir, args.output_dir)
init_logger()
set_seed(args)
processor = GoEmotionsProcessor(args)
label_list = processor.get_labels()
config = BertConfig.from_pretrained(
args.model_name_or_path,
num_labels=len(label_list),
finetuning_task=args.task,
id2label={str(i): label for i, label in enumerate(label_list)},
label2id={label: i for i, label in enumerate(label_list)}
)
tokenizer = BertTokenizer.from_pretrained(
args.tokenizer_name_or_path,
)
model = BertForMultiLabelClassification.from_pretrained(
args.model_name_or_path,
config=config
)
# GPU or CPU
args.device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
model.to(args.device)
# Load dataset
train_dataset = load_and_cache_examples(args, tokenizer, mode="train") if args.train_file else None
dev_dataset = load_and_cache_examples(args, tokenizer, mode="dev") if args.dev_file else None
test_dataset = load_and_cache_examples(args, tokenizer, mode="test") if args.test_file else None
if dev_dataset is None:
args.evaluate_test_during_training = True # If there is no dev dataset, only use test dataset
if args.do_train:
global_step, tr_loss = train(args, model, tokenizer, train_dataset, dev_dataset, test_dataset)
logger.info(" global_step = {}, average loss = {}".format(global_step, tr_loss))
results = {}
if args.do_eval:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + "pytorch_model.bin", recursive=True))
)
if not args.eval_all_checkpoints:
checkpoints = checkpoints[-1:]
else:
logging.getLogger("transformers.configuration_utils").setLevel(logging.WARN) # Reduce logging
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1]
model = BertForMultiLabelClassification.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, test_dataset, mode="test", global_step=global_step)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as f_w:
for key in sorted(results.keys()):
f_w.write("{} = {}\n".format(key, str(results[key])))
if __name__ == '__main__':
cli_parser = argparse.ArgumentParser()
cli_parser.add_argument("--taxonomy", type=str, required=True, help="Taxonomy (original, ekman, group)")
cli_args = cli_parser.parse_args()
main(cli_args)