-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEncode_Decode.py
executable file
·428 lines (354 loc) · 18.4 KB
/
Encode_Decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import os
import torch.nn as nn
from tqdm import tqdm
from dataloader import KITTIOdometry, collate_fn
from torch.utils.data import DataLoader
from model import EntropyModel
import yaml
import time
from util.utils import *
import torchac_utils
import torchac
import gc
import open3d as o3d
import ChamferDistancePytorch.chamfer3D.dist_chamfer_3D as ChamferDistance
from util.pc_metrics import compute_pc_metrics
def save_byte_stream(prob, sym, save_name):
# torch.Size([178724, 256]) torch.Size([178724])
bt, Q_len =prob.shape
prob = prob.view(bt,Q_len)
sym = sym.view(sym.shape[0])
# Convert to a torchac-compatible CDF.
output_cdf = torchac_utils.pmf_to_cdf(prob)
# torchac expects sym as int16, see README for details.
sym = sym.to(torch.int16)
# torchac expects CDF and sym on CPU.
output_cdf = output_cdf.detach().cpu()
sym = sym.detach().cpu()
# Get real bitrate from the byte_stream.
byte_stream = torchac.encode_float_cdf(output_cdf, sym, check_input_bounds=True)
real_bits = len(byte_stream) * 8
with open(save_name, 'wb') as fout:
fout.write(byte_stream)
# Read from a file.
with open(save_name, 'rb') as fin:
byte_stream = fin.read()
assert torchac.decode_float_cdf(output_cdf, byte_stream).equal(sym)
# print(torchac.decode_float_cdf(output_cdf, byte_stream),sym)
return real_bits
def get_symbol_from_byte_stream(byte_stream, prob):
bt, Q_len = prob.shape
prob = prob.view(bt, Q_len)
output_cdf = torchac_utils.pmf_to_cdf(prob).detach().cpu()
return torchac.decode_float_cdf(output_cdf, byte_stream)
@torch.no_grad()
def encode(input_dict, model_dict, device, max_tree_level, save_name, step):
occ_util_class = occupancy_utils().dec_to_bin_idx_dict
"""Solved the precision error caused by the calculation"""
all_bytes = 0.0
real_bits = 0.0
softmax = nn.Softmax(dim=1)
min_bound,max_bound = input_dict['min_bound'][0].numpy(), input_dict['max_bound'][0].numpy()
voxel_size_by_level = get_voxel_size_by_level_dict(max_bound, min_bound)
range_bound = max_bound - min_bound
parent_nodes = [TreeNode(min_bound, node_idx=0, curr_occu=None, level=0, voxel_size_by_level=voxel_size_by_level)]
octree_nodes, blocks = coords_to_blocks(np.expand_dims(parent_nodes[0].coords, axis=0), level=0,
range_bound=range_bound)
# iter_cnt = 0
"""Data"""
with open(os.path.join(save_name,'meta.b'), 'wb') as f:
f.write(np.array((min_bound, max_bound), dtype=np.float32).tobytes())
all_bytes+=os.path.getsize(os.path.join(save_name,'meta.b'))
par_feats = torch.zeros((len(input_dict['len_batch']), 32)).float().to(device)
par_repeads_idx = torch.ones((len(input_dict['len_batch']))).long()
# HR information
# bin_labels = torch.tensor([1, 0, 0, 0, 0, 0, 0, 0]).bool()
# hr_bin_occu_block = torch.zeros(1 * 8).int()
idx_ls = [[0]] # record the occupied children siblings indexes; By 00110000->[2,3]
hr_blocks = torch.zeros(len(idx_ls),1, 4, 4, 4)
for level in range(0,max_tree_level):
cumu_par_feats_ls = [None for i in range(par_feats.shape[0])]
model_output_ls = []
# Obtain the occupancy code of a specific level
mask = input_dict['octree_nodes'][:, 3] == level
labels = input_dict['labels'][mask]
# print('level:\t',labels)
for node_idx in range(0,8):
sib_mask = [True if node.node_idx==node_idx else False for node in parent_nodes]
sib_labels = labels[sib_mask].to(device)
if len(sib_labels)==0:
# print(f'Skip Level:\t{level}\tat sib idx:\t{node_idx}')
continue
# sib_labels_ls.append(sib_labels)
sib_octree_nodes = octree_nodes[sib_mask].to(device)
sib_blocks = blocks[sib_mask].to(device)
sib_par_feats = par_feats[sib_mask].to(device)
# Obtain the hr block which group by group of siblings
hr_mask = [True if node_idx in sib_group else False for sib_group in idx_ls]
sib_hr_blocks = hr_blocks[hr_mask]
model_output, cumu_par_feats, _ = model_dict[level](sib_par_feats, sib_octree_nodes,
sib_blocks, sib_hr_blocks)
model_output = softmax(model_output)
# cumu_par_feats_ls.append(cumu_par_feats)
# To ensure the order of the parent features is consistent to the next level
sib_mask_to_idx = [i for i, x in enumerate(sib_mask) if x]
cnt = 0
for tmp_idx in sib_mask_to_idx:
cumu_par_feats_ls[tmp_idx] = cumu_par_feats[cnt,:].reshape(-1,32)
cnt+=1
# Perform Compression
tmp_save_name = os.path.join(save_name,str(level).zfill(2))
if not os.path.exists(tmp_save_name):
os.makedirs(tmp_save_name)
tmp_save_name = os.path.join(tmp_save_name,str(node_idx) + '.b')
real_bits += save_byte_stream(model_output, sib_labels, tmp_save_name)
all_bytes += os.path.getsize(tmp_save_name)
# print(f'Finished Level:\t{level}\tat sib idx:\t{node_idx}')
# transfer the node_idx of siblings occu to bin and fill in the hr block
sib_label_to_bin = [torch.tensor(occ_util_class[occu.item()]['bin_occus']) for occu in sib_labels]
# Reshape to 2x2x2 small block
sib_2x2x2_blocks = torch.cat(sib_label_to_bin).reshape(-1, 2, 2, 2).float().unsqueeze(1)
# fill in the hr block (4x4x4);
cnt = 0
for row in range(0, 4, 2):
for col in range(0, 4, 2):
for dep in range(0, 4, 2):
if cnt == node_idx:
sib_hr_blocks[: ,:, row:row + 2, col:col + 2, dep:dep + 2] = sib_2x2x2_blocks
cnt+=1
hr_blocks[hr_mask] = sib_hr_blocks
# get the idx_ls which group all sibs in a sublist
idx_ls = [occ_util_class[label.item()]['idx_occus'] for label in labels]
# hr block for next level
hr_blocks = torch.zeros(len(idx_ls), 1, 4, 4, 4)
# form the parent features for the next level
par_repeads_idx = torch.tensor(
[occ_util_class[label.item()]['num_pos'] for label in labels]).long().to(device)
par_feats = torch.repeat_interleave(torch.cat(cumu_par_feats_ls), par_repeads_idx, dim=0)
"""get children for parents"""
occupancy_ls = ['{0:08b}'.format(int(occu)) for occu in labels]
child_nodes = []
[child_nodes.extend(node.get_children_nodes(occu_symbols=occu_symbols)) for node, occu_symbols in
zip(parent_nodes, occupancy_ls)]
coords = [np.expand_dims(node.coords, axis=0) for node in child_nodes]
coords = np.concatenate(coords, axis=0)
if level + 1 < max_tree_level:
octree_nodes, blocks = coords_to_blocks(coords, level=level + 1, range_bound=range_bound)
parent_nodes = child_nodes
print(f'Finished Level:\t{level}')
print('-'*15)
print('Finish Encoding')
print('-'*15)
# print("Compression Rate:\t",(input_dict['kitti_pts'][0].shape[0]*96.0)/(all_bytes*8.0))
return all_bytes*8.0
@torch.no_grad()
def decode(model_dict, device, max_tree_level, save_name, step):
occ_util_class = occupancy_utils().dec_to_bin_idx_dict
softmax = nn.Softmax(dim=1).to(device)
# with open(save_name+'meta.b', 'rb') as f:
meta = np.fromfile(os.path.join(save_name,'meta.b'), dtype=np.float32)
min_bound, max_bound = meta[:3],meta[3:]
voxel_size_by_level = get_voxel_size_by_level_dict(max_bound, min_bound) # Dictionary to obtain voxel size by level
range_bound = max_bound-min_bound
"""Initialize the root node"""
parent_nodes = [TreeNode(min_bound, node_idx=0,curr_occu=None,level = 0,voxel_size_by_level=voxel_size_by_level)]
octree_nodes, blocks = coords_to_blocks(np.expand_dims(parent_nodes[0].coords,axis=0), level=0, range_bound=range_bound)
par_feats = torch.zeros((1, 32)).float().to(device)
par_repeads_idx = torch.ones((1)).long()
# HR information
# bin_labels = torch.tensor([1, 0, 0, 0, 0, 0, 0, 0]).bool()
# hr_bin_occu_block = torch.zeros(1 * 8).int()
idx_ls = [[0]] # record the occupied children siblings indexes; By 00110000->[2,3]
hr_blocks = torch.zeros(len(idx_ls),1, 4, 4, 4)
for level in range(0, max_tree_level):
"""Entropy model"""
# cumu_par_feats_ls = []
cumu_par_feats_ls = [None for i in range(par_feats.shape[0])]
model_output_ls = []
labels_ls = [[] for i in range(par_feats.shape[0])]
for node_idx in range(0, 8):
"""Read from compress binary file"""
tmp_save_name = os.path.join(save_name, str(level).zfill(2))
tmp_save_name = os.path.join(tmp_save_name, str(node_idx) + '.b')
if not os.path.isfile(tmp_save_name):
# print(f'Skip Level:\t{level}\tat sib idx:\t{node_idx}')
continue
with open(tmp_save_name, 'rb') as fin:
byte_stream = fin.read()
sib_mask = [True if node.node_idx == node_idx else False for node in parent_nodes]
sib_octree_nodes = octree_nodes[sib_mask].to(device)
sib_blocks = blocks[sib_mask].to(device)
sib_par_feats = par_feats[sib_mask].to(device)
# Obtain the hr block which group by group of siblings
hr_mask = [True if node_idx in sib_group else False for sib_group in idx_ls]
sib_hr_blocks = hr_blocks[hr_mask]
model_output, cumu_par_feats, _ = model_dict[level](sib_par_feats, sib_octree_nodes,
sib_blocks, sib_hr_blocks)
model_output = softmax(model_output)
# cumu_par_feats_ls.append(cumu_par_feats)
"""Decode"""
sib_labels = get_symbol_from_byte_stream(byte_stream, model_output)
# To ensure the order of the parent features is consistent to the next level
sib_mask_to_idx = [i for i, x in enumerate(sib_mask) if x]
cnt = 0
for tmp_idx in sib_mask_to_idx:
cumu_par_feats_ls[tmp_idx] = cumu_par_feats[cnt, :].reshape(-1, 32)
labels_ls[tmp_idx].append(sib_labels[cnt])
cnt += 1
# labels_ls.append(sib_labels)
# transfer the node_idx of siblings occu to bin and fill in the hr block
sib_label_to_bin = [torch.tensor(occ_util_class[occu.item()]['bin_occus']) for occu in sib_labels]
# Reshape to 2x2x2 small block
sib_2x2x2_blocks = torch.cat(sib_label_to_bin).reshape(-1, 2, 2, 2).float().unsqueeze(1)
# fill in the hr block (4x4x4);
cnt = 0
for row in range(0, 4, 2):
for col in range(0, 4, 2):
for dep in range(0, 4, 2):
if cnt == node_idx:
sib_hr_blocks[: ,:, row:row + 2, col:col + 2, dep:dep + 2] = sib_2x2x2_blocks
cnt+=1
hr_blocks[hr_mask] = sib_hr_blocks
labels_ls = [item for sublist in labels_ls for item in sublist]
labels_ls = torch.stack(labels_ls)
# print('level:\t',labels_ls)
# get the idx_ls which group all sibs in a sublist
idx_ls = [occ_util_class[label.item()]['idx_occus'] for label in labels_ls]
# hr block for next level
hr_blocks = torch.zeros(len(idx_ls), 1, 4, 4, 4)
# form the parent features for the next level
par_repeads_idx = torch.tensor(
[occ_util_class[label.item()]['num_pos'] for label in labels_ls]).long().to(device)
par_feats = torch.repeat_interleave(torch.cat(cumu_par_feats_ls), par_repeads_idx, dim=0)
"""Transfer the decode int to binary"""
occupancy_ls = ['{0:08b}'.format(int(occu)) for occu in labels_ls]
"""Init children nodes for each parent nodes with the corresponding occupancy symbols"""
child_nodes = []
[child_nodes.extend(node.get_children_nodes(occu_symbols=occu_symbols)) for node, occu_symbols in
zip(parent_nodes, occupancy_ls)]
coords = [np.expand_dims(node.coords, axis=0) for node in child_nodes]
coords = np.concatenate(coords, axis=0)
octree_nodes, blocks = coords_to_blocks(coords, level=level + 1, range_bound=range_bound)
parent_nodes = child_nodes
print(f'Finished Level:\t{level}')
print('-'*15)
print('Finish Decoding')
print('-'*15)
return coords, blocks
if __name__ == "__main__":
config_dir = 'config_ent.yml'
cfg = yaml.safe_load(open(config_dir, 'r'))
root_dir = cfg['ROOT_dir']
# epoch = cfg['epoch']
start_epoch = 0
step = cfg['node_each_iter']
max_val_num = cfg['max_val_num']
min_tree_level = 0
max_tree_level = cfg['octree_height']
compress_save_dir = cfg['compress_save_dir']
if not os.path.exists(compress_save_dir):
os.makedirs(compress_save_dir)
kitti_bin_dir = cfg['KITTI_BIN_dir']
chamfer_dist = ChamferDistance.chamfer_3DDist()
"""Ckpt dir"""
ckpt_dir = os.path.join(root_dir,'ent/ckpts', cfg['CKPT_DIR'])
ckpt_level_dir_dict = {}
for level in range(min_tree_level,max_tree_level):
ckpt_level_dir_dict.update({level:os.path.join(ckpt_dir,str(level))})
print(f'Level:\t{level}\tSave dir:\t{os.path.join(ckpt_dir,str(level))}')
time.sleep(2.0)
"""Ent Model"""
model_level_dict = {}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
for level in range(min_tree_level, max_tree_level):
model = EntropyModel()
model = nn.DataParallel(model)
model = model.to(device)
for param in model.parameters():
param.requires_grad = False
model = model.to(device)
model.eval()
assert os.path.isfile(os.path.join(ckpt_level_dir_dict[level],'latest.ckpt'))
ckpt = torch.load(os.path.join(ckpt_level_dir_dict[level], 'latest.ckpt'))
model.load_state_dict(ckpt['state_dict'])
start_epoch = ckpt['epoch']
print(f"Load level {level} from {os.path.join(ckpt_level_dir_dict[level], 'latest.ckpt')}...")
model_level_dict.update({level: model})
val_dataset = KITTIOdometry(cfg=cfg, split='val', max_tree_level=max_tree_level)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=4,
pin_memory=False, collate_fn=collate_fn)
print(f'Start from epoch:\t{start_epoch}')
val_num = min(max_val_num,len(val_loader))
data_loader_iter = val_loader.__iter__()
compression_rate = []
chamfer_dist_ls = []
chamfer_ref_dist_ls = []
encode_time = []
decode_time = []
gt_pts_num = []
rec_pts_num = []
d1_psnrs = []
d2_psnrs = []
d1_psnrs_ref = []
d2_psnrs_ref = []
progress_id = len([d for d in os.listdir(compress_save_dir) if f'tree_level_{max_tree_level}' in d]) + 1
progress_dir_name = f'tree_level_{max_tree_level}'
for i in tqdm(range(0,val_num)):
input_dict = data_loader_iter.next()
seq = input_dict['data_path'][0].split('/')[-2]
frame = input_dict['data_path'][0].split('/')[-1].replace('.npz', '')
if not os.path.exists(os.path.join(compress_save_dir,progress_dir_name, seq,'encode',frame)):
os.makedirs(os.path.join(compress_save_dir,progress_dir_name, seq,'encode',frame))
save_name = os.path.join(compress_save_dir,progress_dir_name, seq,'encode', frame)
print(save_name)
"""Encoding"""
tic = time.time()
all_bits = encode(input_dict, model_level_dict, device,max_tree_level,save_name,step)
encode_time.append(time.time()-tic)
torch.cuda.synchronize()
if not os.path.exists(os.path.join(compress_save_dir,progress_dir_name, seq,'decode')):
os.makedirs(os.path.join(compress_save_dir,progress_dir_name, seq,'decode'))
decode_file_name = os.path.join(compress_save_dir,progress_dir_name, seq,'decode',frame+'.ply')
"""Decoding"""
tic = time.time()
decode_coords, blocks = decode(model_level_dict, device, max_tree_level, save_name,step)
rec_pts_num.append(decode_coords.shape[0])
decode_time.append(time.time() - tic)
"""Write file"""
out_coords = decode_coords
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(out_coords)
o3d.io.write_point_cloud(decode_file_name, pcd, write_ascii=True)
"""Metrics"""
kitti_frame_path = os.path.join(kitti_bin_dir,seq,'velodyne',frame+'.bin')
original_points = np.fromfile(kitti_frame_path, dtype=np.float32).reshape(-1, 4)[:,:3]
gt_pts_num.append(original_points.shape[0])
"""Compression rate"""
kitti_bits = original_points.shape[0]*96.0
compression_rate.append(kitti_bits / all_bits)
"""Distortion"""
dist1, dist2, _, _ = chamfer_dist(torch.from_numpy(original_points).unsqueeze(0).cuda().float(),
torch.from_numpy(decode_coords.astype(np.float32)).unsqueeze(0).cuda().float())
cham_dist1 = torch.sqrt(dist1).mean().item()
cham_dist2 = torch.sqrt(dist2).mean().item()
chamfer_dist_ls.append(max(cham_dist1, cham_dist2))
"""PSNR"""
ori_pcd = o3d.geometry.PointCloud()
ori_pcd.points = o3d.utility.Vector3dVector(original_points)
ori_pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamKNN(knn=12))
pc_error_metrics = compute_pc_metrics(original_points, decode_coords.astype(np.float32),
r=59.70, p1_n=np.asarray(ori_pcd.normals))
d1_psnrs.append(pc_error_metrics["d1_psnr"])
d2_psnrs.append(pc_error_metrics["d2_psnr"])
gc.collect()
torch.cuda.empty_cache()
print(f'Compression Rate on average:\t{sum(compression_rate)/len(compression_rate)}')
print(f'Chamfer on average:\t{sum(chamfer_dist_ls)/len(chamfer_dist_ls)}')
print(f"d1_psnr:\t{sum(d1_psnrs)/len(d1_psnrs)}\nd2_psnr:\t{sum(d2_psnrs)/len(d2_psnrs)}\n")
print()
print(f'Encode time:\t{sum(encode_time)/len(encode_time)}')
print(f'Decode time:\t{sum(decode_time) / len(decode_time)}')
print()
print(f'Original pts num:\t{sum(gt_pts_num)/len(gt_pts_num)}')
print(f'Rec pts num:\t{sum(rec_pts_num)/len(rec_pts_num)}')
print("Finish")