-
Notifications
You must be signed in to change notification settings - Fork 3
/
coverage_query_treemap.py
269 lines (233 loc) · 10.2 KB
/
coverage_query_treemap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""
python coverage_query_treemap.py
-n <namespace id>
-b <playbook>
-l <pipeline name with the summarisation against the model
Example:
python coverage_query_treemap.py -n humanfirst-abcd-summarised -b playbook-UHP4VVQM2VFRXMOXNBFUOBRH -l key_issue
Function:
Downloads the generatd data for a pipeline name and extracts the class for the model in the worksapce against it.
Downloads the workspace in order to work out the intent names
Produces a n hierarchical level treemap
And produces a horizontal two level bar chart
Limitations:
Plotly horizontal bar charts only support two levels
This only works with conversations
Options:
-c <clip level this script it is in 0.35 format float>
-d <hierarchical delimiter> how to join your fully qualified intent names
-w <nlu id> if you want to select a particular NLU on workspaces which have many
"""
# ******************************************************************************************************************120
# standard imports
import json
import io
import os
# 3rd party imports
import click
import pandas
import plotly.express as px
# custom imports
import humanfirst
@click.command()
# Mandatory
@click.option('-n', '--namespace', type=str, required=True, help='HumanFirst namespace')
@click.option('-b', '--playbook', type=str, required=True, help='HumanFirst playbook id')
@click.option('-l', '--pipeline', type=str, required=True, help='Name of pipeline to get results from')
# Set in env variables normally
@click.option('-u', '--username', type=str, default='',
help='HumanFirst username if not setting HF_USERNAME environment variable')
@click.option('-p', '--password', type=str, default='',
help='HumanFirst password if not setting HF_PASSWORD environment variable')
# optional to override defaults
@click.option('-c', '--clip', type=float, required=False, default=0.35, help='Clip Point as 0.00 format')
@click.option('-d', '--hierarchical_delimiter', type=str, required=False, default='-',
help='Delimiter for hierarchical intents')
@click.option('-w', '--which_nlu', type=str, required=False, default='',
help='NLU name like nlu-57QM7EN3UFEZPGH7PI3FCJGV(HumanFirst NLU) if blank will just take the first')
def main(namespace: str, playbook: str,
pipeline: str,
username: str, password: str,
clip: float,
hierarchical_delimiter: str,
which_nlu: str) -> None:
"""Main Function"""
# do authorisation
hf_api = humanfirst.apis.HFAPI(username=username,password=password)
# check how many converation sets there are
playbook_info = hf_api.get_playbook_info(playbook=playbook,namespace=namespace)
num_conversation_sets = len(playbook_info["conversationSets"])
if num_conversation_sets == 0:
raise RuntimeError("No conversationset attached")
elif num_conversation_sets > 1:
print(f'Warning: {num_conversation_sets} attached - check whether intentional')
print("\nConvosets:")
print(json.dumps(playbook_info["conversationSets"], indent=2))
conversation_set_id = playbook_info["conversationSets"][0]["id"]
print(f'Using conversation_set_id: {conversation_set_id}')
# get the playbook name.
playbook_name = playbook_info["name"]
assert isinstance(playbook_name,str)
# Check for trained NLU engines with runids
# runs = hf_api.list_trained_nlu(namespace=namespace,playbook=playbook)
# df_runs = pandas.json_normalize(runs)
# TODO: doesn't currently do anything with this run_id
# could look up the latest fort he latest nluIds
# check how many nlus and get the default
nlu_engines = hf_api.get_nlu_engines(namespace=namespace,playbook=playbook)
default_nlu_engine = None
for nlu in nlu_engines:
if nlu["isDefault"] is True:
default_nlu_engine = nlu["id"]
# check if default has parents
if not "hierarchicalRemapScore" in nlu:
err = 'Please ensure "include parent intents in predictions"'
err = err + 'is set and set to false on your NLU engine'
raise RuntimeError(err)
elif not nlu["hierarchicalRemapScore"] is False:
err = '"include parent intents in predictions" is set to True on your NLU engine'
err = err + '- needs to be set to False'
raise RuntimeError(err)
break
if default_nlu_engine is None:
raise RuntimeError("Can't find default nlu engine")
print(f'\nDefault NLU engine: {default_nlu_engine}')
# get workspace to lookup names
workspace_dict = hf_api.get_playbook(namespace=namespace,
playbook=playbook,
hierarchical_delimiter=hierarchical_delimiter)
workspace = humanfirst.objects.HFWorkspace.from_json(workspace_dict,delimiter=hierarchical_delimiter)
assert isinstance(workspace,humanfirst.objects.HFWorkspace)
print("Downloaded workspace")
# work out which pipelines there are
pipelines = hf_api.list_playbook_pipelines(namespace=namespace,playbook_id=playbook)
if len(pipelines) == 0:
raise RuntimeError("No pipelines to download from have you created it")
count_found = 0
pipeline_id = None
for pl in pipelines:
if pl["name"] == pipeline:
count_found = count_found + 1
pipeline_id = pl["id"]
pipeline_step_id = pl["steps"][0]["id"] # Assumption that each pipeline has one step at the moment
if count_found == 0:
raise RuntimeError(f'Couldn\'t find a pipeline called: {pipeline}')
elif count_found > 1:
raise RuntimeError(f'Multiple pipelines called: {pipeline}')
else:
print(f'Found pipeline: {pipeline} id: {pipeline_id} step_id: {pipeline_step_id}')
data = hf_api.export_query_conversation_inputs(
namespace=namespace,
playbook_id=playbook,
pipeline_id=pipeline_id,
pipeline_step_id=pipeline_step_id,
download_format=2,
dedup_by_hash=False,
dedup_by_convo=False
)
df = pandas.read_csv(io.StringIO(data),delimiter=",")
print(f'Downloaded csv for pipeline run: {df.shape}')
# Get the correct column names
if which_nlu == '':
which_nlu = default_nlu_engine
col_list = df.columns.to_list()
top_matching_intent_id = get_col_name("top_matching_intent_id",col_list,which_nlu)
top_matching_intent_score = get_col_name("top_matching_intent_score",col_list,which_nlu)
# calc clips
df = df.apply(apply_clip,
args=[
clip,
top_matching_intent_score,
top_matching_intent_id,
workspace
],
axis=1)
# expand dynamicaly that to a list and then columns per level
df["fqn_list"] = df["fqn"].str.split(hierarchical_delimiter)
df = df.join(pandas.DataFrame(df["fqn_list"].values.tolist()))
# rename columns
col_mapper = {
top_matching_intent_score: "score"
}
df.rename(inplace=True,columns=col_mapper)
# get levels
max_levels = df["fqn_list"].apply(len).max()
levels = list(range(0,max_levels,1))
print(levels)
# group it
placeholder = 'none_placeholder'
for level in levels:
df[level].fillna(placeholder,inplace=True)
gb = df[levels + ["id"]].groupby(levels,as_index=False).count()
gb.rename(columns={"id":"id_count"},inplace=True)
pandas.options.display.max_rows = 1000
for level in levels:
gb.loc[gb[level] == placeholder,level] = None
print("Groupings are")
print(gb)
# Create the treemap plot using Plotly - using px.Constant("<br>") makes a prettier hover info for the root level
fig = px.treemap(gb, path=[px.Constant("<br>")] + levels, values='id_count')
# format main body of treemap and add labels
# colours set using template
fig.update_traces(marker={"cornerradius":3})
fig.update_layout(template='plotly', width=1500, height=750)
fig.update_traces(textinfo="label + percent root")
fig.update_traces(root_color="#343D54")
# set the label font and size
fig.data[0]['textfont']['size'] = 12
fig.data[0]['textfont']['family'] = 'Calibri'
#format title, hover info fonts and background
fig.update_layout(
title= "Overview of categories by total count",
title_y=0.98,
title_font_color = 'white',
title_font_size = 24,
hoverlabel=dict(
font_size=16,
font_family="Calibri"
),
paper_bgcolor="#343D54",
)
# Update the hover info
fig.data[0].hovertemplate = (
'<b>%{label}</b>'
'<br>' +
'Count: %{value}' +
'<br>' +
'Percent of all utterances: <i>%{percentRoot:.1%} </i>'+
'<br>' +
'Percent of all parent category: <i>%{percentParent:.1%} </i>'+
'<br>'
)
#change margin size - make the plot bigger within the frame
fig.update_layout(margin = dict(t=38, l=10, r=10, b=15))
output_filename=os.path.join('data','html',f'{playbook}_coverage_query_{playbook_name.replace(" ","_")}_{pipeline}.html')
fig.write_html(output_filename)
print(f'Wrote to: {output_filename}')
def apply_clip(row: pandas.Series,
clip: float,
top_matching_intent_score: str,
top_matching_intent_id: str,
workspace: humanfirst.objects.HFWorkspace) -> pandas.Series:
"""Apply clip"""
if float(row[top_matching_intent_score]) >= clip:
row["fqn"] = workspace.get_fully_qualified_intent_name(row[top_matching_intent_id])
else:
row["fqn"] = 'other'
return row
def get_col_name(starts_with: str, col_list: list, which_nlu: str = '') -> str:
"""Work out the name of the first NLU engine"""
for col in col_list:
assert isinstance(col,str)
if col.startswith(starts_with):
if which_nlu == '':
print(col)
return col
else:
if which_nlu in col:
print(col)
return col
print(col_list)
raise RuntimeError(f'No column starting: {starts_with} maybe you did not train the NLU engine')
if __name__ == '__main__':
main() # pylint: disable=no-value-for-parameter