Skip to content

Latest commit

 

History

History
66 lines (49 loc) · 2.16 KB

README.md

File metadata and controls

66 lines (49 loc) · 2.16 KB

Invascular OCT Image Segmentation

Build Status

Architecture

Architecture of U-net

Dependencies

  • CentOS 7
  • Python 3.6.5
  • Python-tkinter
  • Deploy the environment.
    pip install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com

Usage

Data Preprocess

  • Download source codes, run command:
    git clone https://github.com/zhyantao/image-segmentation.git
  • Download TrainData.tar.gz to the directory image-segmentation/.
  • Change directory:
    cd image-segmentation/src/
  • Make original dataset, run command:
    sh make_dataset.sh
  • Data preprocess, run command:
    python data_preprocess.py
  • DIY your dataset, open DIY_dataset.sh and modify the number of images you wanna to train and valid, then run command:
    sh DIY_dataset.sh

Training model

python train.py

Test model

python test.py

Visualizing the result

python label_visualization.py

References

  1. U-Net: Convolutional Networks for Biomedical Image Segmentation
  2. Deep-Learning Based, Automated Segmentation of Macular Edema in Optical Coherence Tomography
  3. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  4. Relationship Between a Systemic Inflammatory Marker, Plaque Inflammation, and Plaque Characteristics Determined by Intravascular Optical Coherence Tomography
  5. preddy5/segnet

Results

For more details, see nohup.out

Visualizing Learning

tensorboard --logdir=../logs/