-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreProcess.py
181 lines (140 loc) · 4.95 KB
/
preProcess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import csv
from utilities import timeShift
from utilities import timeShift2
from utilities import drawVector
from scipy.sparse import csr_matrix
from scipy.io import mmwrite
def featureProcess(filename):
data = []
end_time=[]
time_split =[]
csvfile = open("end_time.csv", 'rt')
end_csv = csv.reader(csvfile)
end_time_all=[]
for line in end_csv:
end_time_all.append(line[0])
csvfile.close()
csvfile = open(filename, 'rt')
csvfile.readline()
log_csv = csv.reader(csvfile)
enroll_id = 0
line_idx = -1
for line in log_csv:
if enroll_id != int(line[0]):
enroll_id = int(line[0])
end_time.append('0')
line_idx += 1
end_time[line_idx] =end_time_all[enroll_id-1]
csvfile.close()
print('%s end_time calculate finish' % filename)
for lt in end_time:
tmp_split = []
for days in range(-58, 0, 2):
tmp_split.append(timeShift2(lt, days/2))
time_split.append(tmp_split)
print('%s time_split calculate finish: %d' % (filename, len(time_split)))
# n points splitting n+1 peices
# time_split = []
# for days in range(-145, 0, 5):
# time_split.append(timeShift("2014-08-01T00:00:00", days))
# n points splitting n+1 peices
lag_split = []
for lag in range(0, 870, 30):
lag_split.append(lag)
csvfile = open(filename, 'rt')
csvfile.readline()
log_csv = csv.reader(csvfile)
# enroll_id = 0
# line_idx = -1
# for line in log_csv:
# if enroll_id != int(line[0]):
# ## complete for last line
# ## init for new line
# enroll_id = int(line[0])
# data.append([0] * 300)
# line_idx += 1
# idx_time = 0 # from 0 to len(time_split)
# while idx_time < len(time_split[line_idx]) and time_split[line_idx][idx_time] < line[1]:
# idx_time += 1
# lag = (0 if line[4]=='null' else float(line[4]))
# idx_lag = 0 # from 0 to len(lag_split)
# while idx_lag < len(lag_split) and lag_split[idx_lag] < lag:
# idx_lag += 1
# bias = idx_time * (len(lag_split) + 1) + idx_lag
# bias *= 3
# # if line[3]=='navigate':
# # data[line_idx][bias+1] = 1
# if line[3]=='access':
# data[line_idx][bias+0] = 1
# if line[3]=='problem':
# data[line_idx][bias+1] = 1
# # if line[3]=='page_close':
# # data[line_idx][bias+4] = 1
# if line[3]=='video':
# data[line_idx][bias+2] = 1
# preparation for sparse matrix
rows = []
cols = []
values = []
row_cnt = 0
row_value = []
enroll_id = 0
for line in log_csv:
if enroll_id != int(line[0]):
## complete for last line
if row_cnt > 0:
for i in range(len(row_value)):
if row_value[i] != 0:
rows.append(row_cnt-1)
cols.append(i)
values.append(row_value[i])
drawVector(row_value, 30, 30, 7)
## init for new line
enroll_id = int(line[0])
row_value = [0] * 6300
row_cnt += 1
idx_time = 0 # from 0 to len(time_split)
while idx_time < len(time_split[row_cnt-1]) and time_split[row_cnt-1][idx_time] < line[1]:
idx_time += 1
lag = (-1 if line[4]=='null' else float(line[4]))
idx_lag = 0 # from 0 to len(lag_split)
while idx_lag < len(lag_split) and lag_split[idx_lag] < lag:
idx_lag += 1
bias = idx_time * (len(lag_split) + 1) + idx_lag
bias *= 7
if line[3]=='navigate':
row_value[bias+0] = 1
if line[3]=='access':
row_value[bias+1] = 1
if line[3]=='problem':
row_value[bias+2] = 1
if line[3]=='page_close':
row_value[bias+3] = 1
if line[3]=='video':
row_value[bias+4] = 1
if line[3]=='wiki':
row_value[bias+5] = 1
if line[3]=='discussion':
row_value[bias+6] = 1
data_sparse = csr_matrix((values, (rows, cols)), shape=(row_cnt, 6300))
csvfile.close()
print('%s feature calculate finish' % filename)
# for i in range(len(data)):
# for j in range(46, len(data[i])):
# data[i][j] = data[i][j-40] - data[i][j-45]
return data_sparse
def preProcess():
data_train = featureProcess('new_log_train_2.csv')
data_test = featureProcess('new_log_test_2.csv')
mmwrite('tmpTrain_2', data_train)
mmwrite('tmpTest_2', data_test)
# csvfile = open('tmpTrain.csv', 'w', newline='')
# writer = csv.writer(csvfile)
# writer.writerows(data_train)
# csvfile = open('tmpTest.csv', 'w', newline='')
# writer = csv.writer(csvfile)
# writer.writerows(data_test)
# csvfile.close()
return data_train, data_test
if __name__ == '__main__':
preProcess()