-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
executable file
·155 lines (117 loc) · 4.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
import os
import sys
import torch
import transformers
from peft.utils import ModulesToSaveWrapper
from torch.utils.data import DataLoader
from transformers import HfArgumentParser, AutoTokenizer
from utils import *
from collator import Collator
from arguments import ModelArguments, DataArguments, TrainingArguments
from model.model import RecComModel
from peft import (
TaskType,
LoraConfig,
get_peft_model,
set_peft_model_state_dict,
)
from functools import partial
import torch.utils.checkpoint
class CastOutputToFloat(torch.nn.Module):
def __init__(self, layer):
super().__init__()
self.layer = layer
def forward(self, *args, **kwargs):
return self.layer(*args, **kwargs).float()
def main():
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
set_seed(training_args.seed)
ensure_dir(training_args.output_dir)
# device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if local_rank == 0:
print(vars(model_args))
print(vars(data_args))
print(vars(training_args))
if ddp:
# device_map = {"": local_rank}
device = torch.device("cuda", local_rank)
training_args.ddp_find_unused_parameters = False
else:
device = torch.device("cuda")
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
model_max_length = data_args.model_max_length,
trust_remote_code = True,
)
train_data, valid_data, n_photos = load_datasets(data_args, tokenizer)
if local_rank==0:
print("data number:", len(train_data))
collator = Collator(data_args, tokenizer)
torch_dtype = torch.bfloat16
model = RecComModel.from_pretrained(
model_args.model_name_or_path,
torch_dtype=torch_dtype,
n_photos=n_photos,
args=model_args,
empty_init=False,
device_map=None,
)
model = model.to(torch_dtype)
model = model.to(device)
if model_args.lora:
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=model_args.lora_r,
target_modules=model_args.lora_target_modules.split(","),
modules_to_save=model_args.lora_modules_to_save.split(","),
lora_alpha=model_args.lora_alpha,
bias="none",
lora_dropout=model_args.lora_dropout,
)
model = get_peft_model(model, peft_config)
if training_args.resume_from_checkpoint:
checkpoint_name = os.path.join(
training_args.resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
training_args.resume_from_checkpoint = False # So the trainer won't try loading its state
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
if local_rank == 0:
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
model = set_peft_model_state_dict(model, adapters_weights)
else:
if local_rank == 0:
print(f"Checkpoint {checkpoint_name} not found")
if local_rank == 0:
model.print_trainable_parameters()
if not ddp and torch.cuda.device_count() > 1:
model.is_parallelizable = True
model.model_parallel = True
model.config.use_cache = False
torch.backends.cuda.enable_flash_sdp(True)
model.lm_head = CastOutputToFloat(model.transformer.output_layer)
if training_args.gradient_checkpointing:
torch.utils.checkpoint.checkpoint = partial(torch.utils.checkpoint.checkpoint,
use_reentrant=False)
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=valid_data,
args=training_args,
tokenizer=tokenizer,
data_collator=collator,
)
trainer.train()
trainer.save_state()
trainer.save_model()
if __name__ == "__main__":
main()