diff --git a/2024/07/04/rag-knowledge-graphs/index.html b/2024/07/04/rag-knowledge-graphs/index.html index 0f5b6dfa4..343889aa7 100644 --- a/2024/07/04/rag-knowledge-graphs/index.html +++ b/2024/07/04/rag-knowledge-graphs/index.html @@ -141,7 +141,7 @@

解决的问题

在 RAG 中使用知识图谱主要解决在大型文档库上问答和理解困难的问题,特别是那些普通 RAG 方法难以处理的全局性问题。普通 RAG 在回答针对整个文档库的全局性问题时表现不佳,例如问题:请告诉我所有关于 XXX 的事情,这个问题涉及到的上下文可能分布在整个大型文档库中,普通 RAG 的向量检索方法很难得到这种分散、细粒度的文档信息,向量检索经常使用 top-k 算法来获取最相近的上下文文档,这种方式很容易遗漏关联的文档块,从而导致信息检索不完整。

-

另外是 LLM 的上下文窗口限制问题,对于全局性问题往往涉及到非常多的上下文文档,如果要全部提交给 LLM 则很容易超出 LLM 的窗口限制,而知识图谱将文档提取成实体关系后,实际上大大压缩了文档块的大小,从而让所有相关文档提交给 LLM 成为可能。

+

另外是 LLM 的上下文窗口限制问题,对于全局性问题往往涉及到非常多的上下文文档,如果要全部提交给 LLM 则很容易超出 LLM 的窗口限制,而知识图谱将文档提取成实体关系后再提交给 LLM,实际上大大压缩了文档块的大小,从而让所有相关文档提交给 LLM 成为可能。

与普通 RAG 的区别