-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dep.py
executable file
·380 lines (334 loc) · 16.6 KB
/
train_dep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import numpy as np
import torch
import argparse
import os
import sys
import torch.nn as nn
import logging
import time
import json
from torch import cuda
from helping_utils.logger import configure_logger, get_logger
from model_bllip_dep import TransformerGrammar
parser = argparse.ArgumentParser()
parser.add_argument('--train_file', default='data/train_LG_bllip_action.csv', type=str)
parser.add_argument('--dev_file', default='data/dev_bllip_action.csv', type=str)
parser.add_argument('--test_file', default='data/test_bllip_action.csv', type=str)
parser.add_argument('--log_file', default='logs/log.txt', type=str)
parser.add_argument('--model_file', default='', type=str)
parser.add_argument('--save_path', default='models/bllip.pt', type=str)
parser.add_argument('--vocab_file', default='tokenizer/spm_dp.vocab', type=str)
parser.add_argument('--sentence_level', default=False, action='store_true')
parser.add_argument('--document_level', default=False, action='store_true')
parser.add_argument('--return_h', default=False, action='store_true')
parser.add_argument('--pre_lnorm', default=False, action='store_true')
parser.add_argument('--attn_mask', default=None, type=str)
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--eval_interval', default=1000, type=int)
parser.add_argument('--eval_batch_size', default=16, type=int)
parser.add_argument('--w_dim', default=384, type=int)
parser.add_argument('--n_head', default=8, type=int)
parser.add_argument('--d_head', default=48, type=int)
parser.add_argument('--d_inner', default=1024, type=int)
parser.add_argument('--num_layers', default=16, type=int)
parser.add_argument('--max_relative_length', default=32, type=int)
parser.add_argument('--min_relative_length', default=-32, type=int)
parser.add_argument('--seed', default=1111, type=int)
parser.add_argument('--init_std', default=0.02, type=float)
parser.add_argument('--emb_lr_multiplier', default=1.0, type=float)
parser.add_argument('--weight_decay', default=1.2e-6, type=float)
parser.add_argument('--num_epochs', default=100, type=int)
parser.add_argument('--decay_epochs', default=80, type=int)
parser.add_argument('--scheduler', default='decay', type=str, choices=['cosine', 'decay', 'const'])
parser.add_argument('--optimizer', default='adam', type=str, choices=['adam', 'sgd', 'adamw'])
parser.add_argument('--lr_warm_step', default=3000, type=int)
parser.add_argument('--eta_min', default=0, type=float)
parser.add_argument('--max_lr', default=0.0003, type=float)
parser.add_argument('--start_lr', default=0.0, type=float)
parser.add_argument('--min_lr', default=0.00001, type=float)
parser.add_argument('--max_grad_norm', default=0.25, type=float)
parser.add_argument('--stable_lr', default=0.00005, type=float)
parser.add_argument('--decay_rate', default=0.5, type=float)
parser.add_argument('--decay_interval', default=2, type=int)
parser.add_argument('--log_every', default=100, type=int)
parser.add_argument('--dropout', default=0.1, type=float)
parser.add_argument('--dropoutatt', default=0.1, type=float)
parser.add_argument('--dropoute', default=0.2, type=float)
parser.add_argument('--dropouti', default=0.6, type=float)
parser.add_argument('--dropouta', default=0.2, type=float)
parser.add_argument('--dropoutf', default=0.2, type=float)
parser.add_argument('--dropouth', default=0.0, type=float)
parser.add_argument('--dropouto', default=0.5, type=float)
parser.add_argument('--alpha', default=0.2, type=float)
parser.add_argument('--beta', default=0.1, type=float)
def log_arguments(args):
logger = get_logger()
hp_dict = vars(args)
for key, value in hp_dict.items():
logger.info(f"{key}\t{value}")
def load_data(path, batchsize=-1, shuffle=False):
with open(path, 'r') as f:
sents = [line.strip() for line in f.readlines()]
sents = [sent.split(',') for sent in sents]
sents = [[int(word) for word in sent] for sent in sents]
if shuffle:
np.random.shuffle(sents)
if batchsize == -1:
return [sents]
else:
return [sents[i:i+batchsize] for i in range(0, len(sents), batchsize)]
def add_to_all(data, vocab_size, pad_id, bos_id, eos_id, left_arc, right_arc, startofword_id, pop_root):
max_length = []
startofword_copy = []
for batch in data:
max_tmp = 0
batch_startofword = []
for sent in batch:
sent.insert(0, bos_id)
sent.append(eos_id)
arc_num = sum([1 for word in sent if word in [right_arc, left_arc]])
sent_startofword = [vocab_size if startofword_id[word] == 1 else word for word in sent]
batch_startofword.append(sent_startofword)
length = len(sent) + arc_num
if length > max_tmp:
max_tmp = length
startofword_copy.append(batch_startofword)
max_length.append(max_tmp)
return data, startofword_copy, max_length
def load_vocab(path):
vocab_file = path
pad_id = None
bos_id = None
eos_id = None
left_arc = None
right_arc = None
pop_root = None
with open(vocab_file, 'r') as f:
vocab = [line.strip().split()[0] for line in f.readlines()]
vocab_size = len(vocab)
startofword_id = [0 for _ in range(vocab_size)]
for i in range(0, len(vocab)):
if vocab[i] == '<pad>':
pad_id = i
elif vocab[i] == '<s>':
bos_id = i
elif vocab[i] == '</s>':
eos_id = i
elif vocab[i] == 'left_arc':
left_arc = i
elif vocab[i] == 'right_arc':
right_arc = i
elif vocab[i] == 'pop_root':
pop_root = i
elif vocab[i].startswith('▁'):
startofword_id[i] = 1
return vocab_size, pad_id, bos_id, eos_id, left_arc, right_arc, pop_root, startofword_id, vocab
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
if hasattr(m, 'weight'):
scale = 2.0 / args.num_layers
fan_in = nn.init._calculate_correct_fan(m.weight, 'fan_in')
nn.init.trunc_normal_(m.weight, 0.0, np.sqrt(scale / fan_in))
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias, 0.0)
elif classname.find('LayerNorm') != -1:
if hasattr(m, 'weight'):
nn.init.constant_(m.weight, 1.0)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias, 0.0)
elif classname.find('TransformerGrammar') != -1:
if hasattr(m, 'r_w_bias'):
fan_in = nn.init._calculate_correct_fan(m.r_w_bias, 'fan_in')
nn.init.trunc_normal_(m.r_w_bias, 0.0, np.sqrt(1.0 / fan_in))
if hasattr(m, 'r_r_bias'):
fan_in = nn.init._calculate_correct_fan(m.r_r_bias, 'fan_in')
nn.init.trunc_normal_(m.r_r_bias, 0.0, np.sqrt(1.0 / fan_in))
def eval(data, startofword, model, length, args = None):
model.eval()
num_sents = 0
total_loss = 0.0
num_words = 0
uas = 0
with torch.no_grad():
for i in range(len(data)):
sents = data[i]
batch_size = len(sents)
total_length = sum([len(sent) - 1 for sent in sents])
mems = tuple()
ret = model(sents, startofword[i], length[i], args.attn_mask, args.document_level, False,
args.max_relative_length, args.min_relative_length)
num_words += total_length
num_sents += batch_size
total_loss += ret.sum().item()
ppl = np.exp(total_loss / num_words)
logger = get_logger()
logger.info(f"eval ppl {ppl:.4f}")
model.train()
return ppl, uas
def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_path = args.train_file
dev_path = args.dev_file
test_path = args.test_file
batch_size = args.batch_size
eval_batch_size = args.eval_batch_size
train_data = load_data(train_path, batchsize=batch_size, shuffle=True)
dev_data = load_data(dev_path, batchsize=eval_batch_size, shuffle=True)
test_data = load_data(test_path, batchsize=eval_batch_size, shuffle=True)
vocab_size, pad_id, bos_id, eos_id, left_arc, right_arc, pop_root, startofword_id, vocab = load_vocab(args.vocab_file)
# print(left_arc)
# print(right_arc)
# print(len(startofword_id))
train_data, startofword_train, train_length = add_to_all(train_data, vocab_size, pad_id, bos_id, eos_id, left_arc, right_arc, startofword_id, pop_root)
dev_data, startofword_dev, dev_length = add_to_all(dev_data, vocab_size, pad_id, bos_id, eos_id, left_arc, right_arc, startofword_id, pop_root)
test_data, startofword_test, test_length = add_to_all(test_data, vocab_size, pad_id, bos_id, eos_id, left_arc, right_arc, startofword_id, pop_root)
assert len(train_data) == len(startofword_train)
assert len(dev_data) == len(startofword_dev)
assert len(test_data) == len(startofword_test)
assert len(train_data) == len(train_length)
assert len(dev_data) == len(dev_length)
assert len(test_data) == len(test_length)
# opening_id and closing_id are tuple-like ranges
configure_logger(args.log_file)
# log the parameters
log_arguments(args)
logger = get_logger()
logger.info(f"train data batches: {len(train_data)}")
logger.info(f"dev data batches: {len(dev_data)}")
logger.info(f"test data batches: {len(test_data)}")
start_time = time.time()
cuda.set_device(args.gpu)
if args.model_file == '':
model = TransformerGrammar(vocab_size, args.w_dim, args.n_head, args.d_head, args.d_inner,
args.num_layers, args.dropout, args.dropoutatt, pad_id, bos_id,
eos_id, left_arc, right_arc, pop_root, startofword_id, args.pre_lnorm)
logger.info(f"model parameter counts: {sum(p.numel() for p in model.parameters())}")
model.apply(weights_init)
fan_in = nn.init._calculate_correct_fan(model.emb.weight, 'fan_in')
logger.info(f"fan in {fan_in}")
nn.init.uniform_(model.emb.weight, -np.sqrt(3 / fan_in), np.sqrt(3 / fan_in))
else:
logger.info(f"loading model from {args.model_file}")
checkpoint = torch.load(args.model_file)
model = checkpoint['model']
logger.info(f"model parameter counts: {sum(p.numel() for p in model.parameters())}")
nonemb_params = [p for p in model.parameters() if p.size() != (vocab_size, args.w_dim)]
emb_params = list(model.emb.parameters())
param_list = [nonemb_params, emb_params]
lr_list = [1, args.emb_lr_multiplier]
if args.optimizer == 'adam':
optimizer = torch.optim.Adam([{'params': p, 'lr': lr} for p, lr in zip(param_list, lr_list)], weight_decay=args.weight_decay)
elif args.optimizer == 'sgd':
optimizer = torch.optim.SGD([{'params': p, 'lr': lr} for p, lr in zip(param_list, lr_list)], weight_decay=args.weight_decay)
elif args.optimizer == 'adamw':
optimizer = torch.optim.AdamW([{'params': p, 'lr': lr} for p, lr in zip(param_list, lr_list)], weight_decay=args.weight_decay)
else:
raise NotImplementedError
total_steps = len(train_data) * args.num_epochs
decay_steps = len(train_data) * args.decay_epochs
warm_up_step = args.lr_warm_step
if args.scheduler == 'cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=decay_steps - warm_up_step, eta_min=args.eta_min)
warm_up_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step: (step / warm_up_step * (args.max_lr - args.start_lr) + args.start_lr) if step < warm_up_step else args.max_lr, last_epoch=-1)
elif args.scheduler == 'decay':
warm_up_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step: (step / warm_up_step * (args.max_lr - args.start_lr) + args.start_lr) if step < warm_up_step else args.max_lr, last_epoch=-1)
else:
for param_group in optimizer.param_groups:
param_group['lr'] = args.max_lr
model.cuda()
model.train()
best_val_ppl = 1e5
best_val_uas = 0
train_step = 0
remaining_epoch = 0
for epoch in range(args.num_epochs):
logger.info(f"epoch {epoch}")
num_words = 0
num_sents = 0
train_loss = 0.0
for i in range(len(train_data)):
tmp_time = time.time()
sents = train_data[i]
batch_size = len(sents)
total_length = sum([len(sent) - 1 for sent in sents])
optimizer.zero_grad()
mems = tuple()
model : TransformerGrammar
# print(startofword_train[i])
ret = model(sents, startofword_train[i], train_length[i], args.attn_mask, args.document_level, args.return_h,
args.max_relative_length, args.min_relative_length)
if args.return_h:
raw_loss, hidden = ret
train_loss += raw_loss.sum().item()
loss = raw_loss.mean()
loss = loss + args.alpha * hidden.pow(2).mean()
loss = loss + args.beta * ((hidden[1:] - hidden[:-1]).pow(2)).mean()
else:
raw_loss = ret
loss = raw_loss.mean()
train_loss += raw_loss.sum().item()
tmp_time2 = time.time()
# print(f"forward time {tmp_time2 - tmp_time:.2f} s")
loss.backward()
tmp_time3 = time.time()
if args.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
train_step += 1
if args.scheduler == 'const':
pass
elif train_step < warm_up_step:
warm_up_scheduler.step()
elif args.scheduler == 'cosine':
if train_step < decay_steps:
scheduler.step()
else:
for i in range(len(optimizer.param_groups)):
optimizer.param_groups[i]['lr'] = args.stable_lr
# print(f"backward time {tmp_time3 - tmp_time2:.2f} s")
num_words += total_length
num_sents += batch_size
if train_step % args.log_every == 0:
logger.info(f"train step {train_step}, lr {optimizer.param_groups[0]['lr']:.6f}, loss {train_loss / num_words:.4f}, ppl {np.exp(train_loss / num_words):.4f}")
num_words = 0
num_sents = 0
train_loss = 0.0
logger.info(f"dev data evaluation ppl {best_val_ppl:.4f}, uas {best_val_uas:.4f}")
if train_step % args.eval_interval == 0:
val_ppl, val_uas = eval(dev_data, startofword_dev, model, dev_length, args=args)
if val_ppl < best_val_ppl:
remaining_epoch = 0
best_val_ppl = val_ppl
best_val_uas = val_uas
logger.info(f"new best ppl {best_val_ppl:.4f}, uas {best_val_uas:.4f}")
checkpoint = {'args': args,
'model': model.cpu(),
'vocab': vocab,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict() if args.scheduler == 'cosine' else None,
'warm_up_scheduler': warm_up_scheduler.state_dict()
}
torch.save(checkpoint, args.save_path)
model.cuda()
test_ppl, test_uas = eval(test_data, startofword_test, model, test_length, args=args)
logger.info(f"test ppl {test_ppl:.4f}, uas {test_uas:.4f}")
elif args.scheduler == 'decay':
remaining_epoch += 1
if remaining_epoch >= args.decay_interval:
remaining_epoch = 0
for i in range(len(optimizer.param_groups)):
optimizer.param_groups[i]['lr'] = max(optimizer.param_groups[i]['lr'] * args.decay_rate, args.min_lr)
logger.info(f"decay lr to {optimizer.param_groups[0]['lr']:.6f}")
end_time = time.time()
logger.info(f"total time {end_time - start_time:.2f} s")
logger.info(f"best val ppl {best_val_ppl:.4f}, uas {best_val_uas:.4f}")
logger.info(f"best test ppl {test_ppl:.4f}, uas {test_uas:.4f}")
logger.info(f"model saved to {args.model_file}")
logger.info(f"log saved to {args.log_file}")
logger.info(f"Done!")
if __name__ == "__main__":
args = parser.parse_args()
main(args)