-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
219 lines (181 loc) · 8.57 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python
import re
import numpy as np
from sklearn.metrics import f1_score
from sklearn import preprocessing
import spacy
nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner', 'textcat'])
category_aspects = [
["Compartments", "Customer_service", "Handles", "Looks", "none", "Price", "Protection", "Quality", "Size_Fit"],
["Battery", "Comfort", "Connectivity", "Durability", "Ease_of_use", "Look", "none", "Price", "Sound"],
["Color", "Comfort", "Durability", "Look", "Materials", "none", "Price", "Size", "Weather_resistance"],
["Build_Quality", "Connectivity", "Extra_functionality", "Feel_Comfort", "Layout", "Looks", "Noise", "none",
"Price"],
["Apps_Interface", "Connectivity", "Customer_service", "Ease_of_use", "Image", "none", "Price", "Size_Look",
"Sound"],
["Accessories", "Build_Quality", "Customer_service", "Ease_of_use", "Noise", "none", "Price", "Suction_Power",
"Weight"]
]
category_annotator = [['B', 'J', 'M'], ['B', 'E', 'J'],
['E', 'J', 'N'], ['B', 'N', 'T'],
['M', 'N', 'T'], ['E', 'N', 'S']]
category_id_dict = {"bags_and_cases": 0, "bluetooth": 1, "boots": 2, "keyboards": 3, "tv": 4, "vacuums": 5}
category_name_dict = {"bags_and_cases": ["bag", "case"], \
"bluetooth": ["bluetooth"], \
"boots": ["boot"], \
"keyboards": ["keyboard"], \
"tv": ["tv", "television"], \
"vacuums": ["vacuum"]}
id_category_dict = {v: k for k, v in category_id_dict.items()}
opinion_words = []
with open('data/opinion-lexicon-English/positive-words.txt', 'r') as fr:
words = fr.read().replace('\n', ' ').split()
opinion_words += words
with open('data/opinion-lexicon-English/negative-words.txt', 'r', encoding="utf-8") as fr:
words = fr.read().replace('\n', ' ').strip().split()
opinion_words += words
opinion_words = set(opinion_words)
from nltk.corpus import stopwords
stop_list = ["the", "be", "and", "of", "a", "in", "to", "have", "to", "it",
"I", "that", "for", "you", "he", "with", "on", "do", "say", "this", "they",
"at", "but", "we", "his", "from", "that", "not", "by", "she", "or",
"as", "what", "go", "their", "can", "who", "get", "if", "would", "her", "all",
"my", "make", "about", "know", "will", "as", "up", "one", "time", "there", "year",
"so", "think", "when", "which", "them", "some", "me", "people", "take", "out",
"into", "just", "see", "him", "your", "come", "could", "now", "than", "like",
"other", "how", "then", "its", "our", "two", "more", "these", "want", "way",
"look", "first", "also", "new", "because", "day", "more", "use", "no", "man",
"find", "here", "thing", "give", "many", "well", "1a", "b", "bb", "bbb", "x"]
stopsets = set(stopwords.words('english')) | set(stop_list)
def load_salience_dict(salience_path):
sent_salience_dict = {}
with open(salience_path, 'r') as fr:
for line in fr:
line = line.strip()
if not len(line):
continue
scode, salience_scores = line.split('\t', 1)
salience_scores = list(map(int, salience_scores.split()))
sent_salience_dict[scode] = salience_scores
return sent_salience_dict
def f_score(true_matrix, pred_matrix):
tp = np.sum(np.logical_and(true_matrix, pred_matrix) * 1, axis=0)
fp = np.sum(np.logical_and(true_matrix == 0, pred_matrix == 1) * 1, axis=0)
fn = np.sum(np.logical_and(true_matrix == 1, pred_matrix == 0) * 1, axis=0)
p = 1.0 * np.sum(tp) / (np.sum(tp) + np.sum(fp))
r = 1.0 * np.sum(tp) / (np.sum(tp) + np.sum(fn))
F = 2 * (p * r) / (p + r)
return F
def evaluate(true_labels, pred_labels, category, eval_mode='multi_label'):
classes = category_aspects[category_id_dict[category]]
class_count = len(classes)
none_idx = classes.index('none')
instance_count = len(true_labels)
assert len(true_labels) == len(pred_labels)
true_label_matrix = np.zeros((instance_count, class_count))
pred_label_matrix = np.zeros((instance_count, class_count))
for i in range(instance_count):
if pred_labels[i] >= class_count:
pred_label_matrix[i][none_idx] = 1
else:
pred_label_matrix[i][pred_labels[i]] = 1
for j in true_labels[i]:
true_label_matrix[i][j] = 1
f1 = f1_score(true_label_matrix, pred_label_matrix, average='micro')
return f1
def is_opinion(sent):
# sent_words = set(sent.split())
doc = nlp(sent)
sent_words = set([token.lemma_ for i, token in enumerate(doc)])
if len(sent_words & opinion_words):
return 1
return 0
def get_sentiment(category):
scode_sentiment_dict = {}
with open('./sentiment/review_test_score_{}.txt'.format(category)) as fr:
for line in fr:
line = line.strip()
if not len(line):
continue
senti_score, scode, original_text = line.split('\t', 2)
scode_sentiment_dict[scode] = float(senti_score)
return scode_sentiment_dict
def get_mate():
scode_mate_dict = {}
with open('./out/asp_prob_diff.txt') as fr:
for line in fr:
line = line.strip()
if not len(line):
continue
scode, mate_score = line.split('\t', 1)
scode_mate_dict[scode] = float(mate_score)
return scode_mate_dict
def get_aspect_memory_norm(seeds_file, word2id, asp_cnt, category, sim_thres):
none_idx = category_aspects[category_id_dict[category]].index('none')
with open(seeds_file, 'r') as fr:
seeds_ids_whole = []
seeds_weights_whole = []
for line_idx, line in enumerate(fr):
if line_idx == none_idx:
continue
seeds_ids = []
seeds_weights = []
for tok in line.split():
word, weight = tok.split(':')
if word in word2id and word2id[word] not in seeds_ids:
seeds_ids.append(word2id[word])
seeds_weights.append(float(weight))
if len(seeds_ids) > asp_cnt:
break
for wid, w_weight in zip(seeds_ids, seeds_weights):
try:
w_idx = seeds_ids_whole.index(wid)
seeds_weights_whole[w_idx] = max(seeds_weights_whole[w_idx], w_weight)
except:
seeds_ids_whole.append(wid)
seeds_weights_whole.append(w_weight)
seeds_weights_whole = normalize_array(seeds_weights_whole, sim_thres * 1, 1)
seeds_ids_whole, seeds_weights_whole = \
(list(t) for t in zip(*sorted(zip(seeds_ids_whole, seeds_weights_whole), key=lambda x: x[1], reverse=True)))
return seeds_ids_whole[:asp_cnt], seeds_weights_whole[:asp_cnt]
def clean_str(string):
def replace_zero(matched):
value = len(matched.group().strip().split('.')[0])
return ' {} '.format('b' * value)
string = string.lower()
string = re.sub(r"\s{2,}", " ", string)
string = re.sub(r""", " ", string)
string = re.sub(r"(http://)?www\.[^ ]+", " url ", string)
string = re.sub('(?P<value>\s[0-9\.]+)\s', replace_zero, string)
string = re.sub(r"\S*[0-9]+\S*", "1a", string)
string = re.sub(r"[^a-z0-9$\'_]", " ", string)
string = re.sub(r"_{2,}", "_", string)
string = re.sub(r"\$+", " $ ", string)
string = re.sub(r"rrb", " ", string)
string = re.sub(r"lrb", " ", string)
string = re.sub(r"rsb", " ", string)
string = re.sub(r"lsb", " ", string)
string = re.sub(r"(?<=[a-z])I", " I", string)
string = re.sub(r"(?<= )[0-9]+(?= )", "NUM", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip()
def normalize_array(a, a_min=0, a_max=1):
min_max_scaler = preprocessing.MinMaxScaler(feature_range=(a_min, a_max))
a = np.expand_dims(np.array(a), axis=1)
a = min_max_scaler.fit_transform(a)
a = np.squeeze(a)
return a
def sort_summary(sys_sum):
sys_sum2 = []
for i, sent in enumerate(sys_sum):
if i == 0:
sys_sum2.append(sent)
else:
if sent[1] == sys_sum2[-1][1] + 1:
new_sent = (sys_sum2[-1][0] + ' ' + sent[0], sent[1], sys_sum2[-1][2] + sent[2], sent[3])
sys_sum2[-1] = new_sent
else:
sys_sum2.append(sent)
sys_sum_sorted = sorted(sys_sum2, key=lambda tup: (-tup[3], tup[1]))
system_sum_content = '\n'.join([sent[0] for sent in sys_sum_sorted])
return system_sum_content