forked from harlanhong/CVPR2022-DaGAN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
117 lines (102 loc) · 6.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from tqdm import trange
import torch
from torch.utils.data import DataLoader
from logger import Logger
from modules.model import GeneratorFullModel, DiscriminatorFullModel
import modules.model as MODEL
from tqdm import tqdm
from torch.optim.lr_scheduler import MultiStepLR
from torch.nn.parallel import DistributedDataParallel as DDP
import pdb
from sync_batchnorm import DataParallelWithCallback
from evaluation_dataset import EvaluationDataset
from frames_dataset import DatasetRepeater
def train(config, generator, discriminator, kp_detector, checkpoint, log_dir, dataset, rank,device,opt,writer):
train_params = config['train_params']
optimizer_generator = torch.optim.Adam(generator.parameters(), lr=train_params['lr_generator'], betas=(0.5, 0.999))
optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=train_params['lr_discriminator'], betas=(0.5, 0.999))
optimizer_kp_detector = torch.optim.Adam(kp_detector.parameters(), lr=train_params['lr_kp_detector'], betas=(0.5, 0.999))
if checkpoint is not None:
start_epoch = Logger.load_cpk(checkpoint, generator, discriminator, kp_detector,
optimizer_generator, optimizer_discriminator,
None if train_params['lr_kp_detector'] == 0 else optimizer_kp_detector)
else:
start_epoch = 0
scheduler_generator = MultiStepLR(optimizer_generator, train_params['epoch_milestones'], gamma=0.1,
last_epoch=start_epoch - 1)
scheduler_discriminator = MultiStepLR(optimizer_discriminator, train_params['epoch_milestones'], gamma=0.1,
last_epoch=start_epoch - 1)
scheduler_kp_detector = MultiStepLR(optimizer_kp_detector, train_params['epoch_milestones'], gamma=0.1,
last_epoch=-1 + start_epoch * (train_params['lr_kp_detector'] != 0))
if 'num_repeats' in train_params or train_params['num_repeats'] != 1:
dataset = DatasetRepeater(dataset, train_params['num_repeats'])
sampler = torch.utils.data.distributed.DistributedSampler(dataset,num_replicas=torch.cuda.device_count(),rank=rank)
dataloader = DataLoader(dataset, batch_size=train_params['batch_size'], shuffle=False, num_workers=16,sampler=sampler, drop_last=True)
generator_full = getattr(MODEL,opt.GFM)(kp_detector, generator, discriminator, train_params,opt)
discriminator_full = DiscriminatorFullModel(kp_detector, generator, discriminator, train_params)
test_dataset = EvaluationDataset(dataroot='/data/fhongac/origDataset/vox1_frames',pairs_list='data/vox_evaluation.csv')
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
batch_size = 1,
shuffle=False,
num_workers=4)
with Logger(log_dir=log_dir, visualizer_params=config['visualizer_params'], checkpoint_freq=train_params['checkpoint_freq']) as logger:
for epoch in trange(start_epoch, train_params['num_epochs']):
#parallel
sampler.set_epoch(epoch)
total = len(dataloader)
epoch_train_loss = 0
generator.train(), discriminator.train(), kp_detector.train()
with tqdm(total=total) as par:
for i,x in enumerate(dataloader):
x['source'] = x['source'].to(device)
x['driving'] = x['driving'].to(device)
losses_generator, generated = generator_full(x)
loss_values = [val.mean() for val in losses_generator.values()]
loss = sum(loss_values)
loss.backward()
optimizer_generator.step()
optimizer_generator.zero_grad()
optimizer_kp_detector.step()
optimizer_kp_detector.zero_grad()
epoch_train_loss+=loss.item()
if train_params['loss_weights']['generator_gan'] != 0:
optimizer_discriminator.zero_grad()
losses_discriminator = discriminator_full(x, generated)
loss_values = [val.mean() for val in losses_discriminator.values()]
loss = sum(loss_values)
loss.backward()
optimizer_discriminator.step()
optimizer_discriminator.zero_grad()
else:
losses_discriminator = {}
losses_generator.update(losses_discriminator)
losses = {key: value.mean().detach().data.cpu().numpy() for key, value in losses_generator.items()}
# for k,v in losses.items():
# writer.add_scalar(k, v, total*epoch+i)
logger.log_iter(losses=losses)
par.update(1)
epoch_train_loss = epoch_train_loss/total
if (epoch + 1) % train_params['checkpoint_freq'] == 0:
writer.add_scalar('epoch_train_loss', epoch_train_loss, epoch)
scheduler_generator.step()
scheduler_discriminator.step()
scheduler_kp_detector.step()
logger.log_epoch(epoch, {'generator': generator,
'discriminator': discriminator,
'kp_detector': kp_detector,
'optimizer_generator': optimizer_generator,
'optimizer_discriminator': optimizer_discriminator,
'optimizer_kp_detector': optimizer_kp_detector}, inp=x, out=generated)
generator.eval(), discriminator.eval(), kp_detector.eval()
if (epoch + 1) % train_params['checkpoint_freq'] == 0:
epoch_eval_loss = 0
for i, data in tqdm(enumerate(test_dataloader)):
data['source'] = data['source'].cuda()
data['driving'] = data['driving'].cuda()
losses_generator, generated = generator_full(data)
loss_values = [val.mean() for val in losses_generator.values()]
loss = sum(loss_values)
epoch_eval_loss+=loss.item()
epoch_eval_loss = epoch_eval_loss/len(test_dataloader)
writer.add_scalar('epoch_eval_loss', epoch_eval_loss, epoch)