forked from chipsalliance/caliptra-sw
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintegration_tests.rs
1031 lines (906 loc) · 35.1 KB
/
integration_tests.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed under the Apache-2.0 license
use std::error::Error;
use std::iter;
use caliptra_builder::{firmware, FwId};
use caliptra_drivers::{Array4x12, Array4xN, Ecc384PubKey};
use caliptra_drivers_test_bin::DoeTestResults;
use caliptra_hw_model::{
BootParams, DefaultHwModel, DeviceLifecycle, HwModel, InitParams, ModelError, SecurityState,
TrngMode,
};
use caliptra_hw_model_types::EtrngResponse;
use caliptra_registers::mbox::enums::MboxStatusE;
use caliptra_registers::soc_ifc::{
meta::{CptraItrngEntropyConfig0, CptraItrngEntropyConfig1},
regs::{CptraItrngEntropyConfig0WriteVal, CptraItrngEntropyConfig1WriteVal},
};
use caliptra_test::{
crypto::derive_ecdsa_keypair,
derive::{DoeInput, DoeOutput},
};
use openssl::{hash::MessageDigest, pkey::PKey};
use ureg::ResettableReg;
use zerocopy::{AsBytes, FromBytes};
fn start_driver_test(test_rom: &'static FwId) -> Result<DefaultHwModel, Box<dyn Error>> {
let rom = caliptra_builder::build_firmware_rom(test_rom)?;
caliptra_hw_model::new(BootParams {
init_params: InitParams {
rom: &rom,
..Default::default()
},
..Default::default()
})
}
fn run_driver_test(test_rom: &'static FwId) {
let mut model = start_driver_test(test_rom).unwrap();
// Wrap in a line-writer so output from different test threads doesn't multiplex within a line.
model.step_until_exit_success().unwrap();
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct DoeTestVectors {
// The keys output by the DOE block (mostly for reference)
doe_output: DoeOutput,
// The expected results of the HMAC operations performed by the test.
expected_test_results: DoeTestResults,
}
impl DoeTestVectors {
/// A standalone implementation of the cryptographic operations necessary to
/// generate the expected DOE test's HMAC results from fuse values and
/// silicon secrets, using only openssl. This independent implementation is
/// used to validate that the test-vector constants are correct.
fn generate(input: &DoeInput) -> Self {
use openssl::sign::Signer;
fn swap_word_bytes(words: &[u32]) -> Vec<u32> {
words.iter().map(|word| word.swap_bytes()).collect()
}
fn hmac384(key: &[u8], data: &[u8]) -> [u8; 48] {
let pkey = PKey::hmac(key).unwrap();
let mut signer = Signer::new(MessageDigest::sha384(), &pkey).unwrap();
signer.update(data).unwrap();
let mut result = [0u8; 48];
signer.sign(&mut result).unwrap();
result
}
fn ecdsa_keygen(seed: &[u8]) -> Ecc384PubKey {
let (_, pub_x, pub_y) = derive_ecdsa_keypair(seed);
Ecc384PubKey {
x: Array4x12::from(pub_x),
y: Array4x12::from(pub_y),
}
}
let mut result = DoeTestVectors {
doe_output: DoeOutput::generate(input),
expected_test_results: Default::default(),
};
result.expected_test_results.hmac_uds_as_key_out_pub = ecdsa_keygen(&hmac384(
swap_word_bytes(&result.doe_output.uds).as_bytes(),
"Hello world!".as_bytes(),
));
result.expected_test_results.hmac_uds_as_data_out_pub = ecdsa_keygen(&hmac384(
swap_word_bytes(&caliptra_drivers_test_bin::DOE_TEST_HMAC_KEY).as_bytes(),
swap_word_bytes(&result.doe_output.uds).as_bytes(),
));
result
.expected_test_results
.hmac_field_entropy_as_key_out_pub = ecdsa_keygen(&hmac384(
swap_word_bytes(&result.doe_output.field_entropy).as_bytes(),
"Hello world!".as_bytes(),
));
result
.expected_test_results
.hmac_field_entropy_as_data_out_pub = ecdsa_keygen(&hmac384(
swap_word_bytes(&caliptra_drivers_test_bin::DOE_TEST_HMAC_KEY).as_bytes(),
swap_word_bytes(&result.doe_output.field_entropy[0..8]).as_bytes(),
));
result
}
}
const DOE_TEST_VECTORS_DEBUG_MODE: DoeTestVectors = DoeTestVectors {
doe_output: DoeOutput {
// The decrypted UDS as stored in the key vault
uds: [
0x34aa667c, 0x0a52c71f, 0x977a1de2, 0x701ef611, 0x0de19e21, 0x24b49b9d, 0xdf205ff6,
0xa9c04303, 0x0de19e21, 0x24b49b9d, 0xdf205ff6, 0xa9c04303,
],
// The decrypted field entropy as stored in the key vault (with padding)
field_entropy: [
0x34aa667c,
0x0a52c71f,
0x977a1de2,
0x701ef611,
0x0de19e21,
0x24b49b9d,
0xdf205ff6,
0xa9c04303,
0xaaaa_aaaa,
0xaaaa_aaaa,
0xaaaa_aaaa,
0xaaaa_aaaa,
],
},
// The expected results of the HMAC operations performed by the test.
expected_test_results: DoeTestResults {
hmac_uds_as_key_out_pub: Ecc384PubKey {
x: Array4xN([
1687789458, 142258272, 2190842666, 3455247989, 3888056521, 676567898, 1336470794,
2772318121, 1868025422, 1214582545, 729740624, 3009942988,
]),
y: Array4xN([
1187075527, 1937696016, 725517213, 1501324878, 2274800079, 3298049249, 2385708560,
2858668788, 4158119455, 4066756829, 2930473191, 2541516328,
]),
},
hmac_uds_as_data_out_pub: Ecc384PubKey {
x: Array4xN([
1188012951, 2101019468, 4151111246, 321995737, 1268508043, 3206177196, 2277418785,
4218900656, 3094045372, 3331153533, 899404842, 3401413295,
]),
y: Array4xN([
702032169, 1819712272, 2174275591, 1110824269, 2866416596, 1313004867, 1300179142,
494318965, 3282077418, 3576834306, 1944338607, 495846318,
]),
},
hmac_field_entropy_as_key_out_pub: Ecc384PubKey {
x: Array4xN([
2239914737, 538068278, 2639025677, 1218690763, 2952038842, 1448164004, 2126938572,
1397119203, 3400164743, 1553307000, 1579829226, 1671197033,
]),
y: Array4xN([
3709694348, 821080470, 4215236444, 3339301837, 1042205687, 3394791030, 4205793518,
3991744897, 1399279513, 2065955491, 4026223323, 2237883749,
]),
},
hmac_field_entropy_as_data_out_pub: Ecc384PubKey {
x: Array4xN([
16127504, 1807623126, 1448292055, 4052217305, 961911699, 747606231, 2311165349,
1941850149, 1401263727, 2590911470, 4055801696, 960530379,
]),
y: Array4xN([
1246980440, 861204768, 2361057385, 1637522451, 1778431949, 1653325401, 3260666418,
2934023501, 2085910263, 534236754, 4209071048, 1469026788,
]),
},
},
};
#[test]
fn test_generate_doe_vectors_when_debug_not_locked() {
// When microcontroller debugging is possible, all the secrets are set by the hardware to
// 0xffff_ffff words.
let vectors = DoeTestVectors::generate(&DoeInput {
doe_obf_key: [0xffff_ffff_u32; 8],
doe_iv: caliptra_drivers_test_bin::DOE_TEST_IV,
uds_seed: [0xffff_ffff_u32; 12],
field_entropy_seed: [0xffff_ffff_u32; 8],
// In debug mode, this defaults to 0xaaaa_aaaa
keyvault_initial_word_value: 0xaaaa_aaaa,
});
assert_eq!(vectors, DOE_TEST_VECTORS_DEBUG_MODE);
}
#[test]
fn test_doe_when_debug_not_locked() {
let rom = caliptra_builder::build_firmware_rom(&firmware::driver_tests::DOE).unwrap();
let mut model = caliptra_hw_model::new(BootParams {
init_params: InitParams {
rom: &rom,
security_state: *SecurityState::from(0)
.set_debug_locked(false)
.set_device_lifecycle(DeviceLifecycle::Unprovisioned),
..Default::default()
},
..Default::default()
})
.unwrap();
let txn = model.wait_for_mailbox_receive().unwrap();
let test_results = DoeTestResults::read_from(txn.req.data.as_slice()).unwrap();
assert_eq!(
test_results,
DOE_TEST_VECTORS_DEBUG_MODE.expected_test_results
)
}
const DOE_TEST_VECTORS: DoeTestVectors = DoeTestVectors {
doe_output: DoeOutput {
uds: [
0x0b21f10f, 0x6963005e, 0x4884d93f, 0x1f91037a, 0x2d37ffe0, 0x3727b5e8, 0xb78b9608,
0x7e0e58d2, 0x420ce5ae, 0x4b1f04f8, 0x33b7af81, 0x72156bd8,
],
field_entropy: [
0x3d75d35e, 0xbc44a31e, 0xad27aee5, 0x75cdd170, 0xe51dcaf4, 0x09c096ae, 0xa70ff448,
0x64834722, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
],
},
expected_test_results: DoeTestResults {
hmac_uds_as_key_out_pub: Ecc384PubKey {
x: Array4xN([
1178783211, 2409029871, 3242977838, 333888818, 19263069, 1643510496, 1837442823,
239210134, 2976376890, 240016293, 1829920246, 604673977,
]),
y: Array4xN([
3252295486, 3312576043, 2990063596, 1387770200, 3920640176, 2062006057, 1799980987,
899709785, 2852029226, 637830070, 1807068751, 2015236177,
]),
},
hmac_uds_as_data_out_pub: Ecc384PubKey {
x: Array4xN([
3780642049, 3453182999, 1751644139, 920456889, 4050113670, 3873779394, 1297921973,
3724333193, 605901499, 147322750, 1094142208, 3700945418,
]),
y: Array4xN([
2845240412, 3607790903, 3082786107, 2959038213, 2725359626, 3735269183, 1394565180,
1096277179, 3492117743, 640718895, 588857878, 1545505434,
]),
},
hmac_field_entropy_as_key_out_pub: Ecc384PubKey {
x: Array4xN([
4052491145, 4186721582, 3342395483, 1632463994, 3193016662, 2204970242, 3835027544,
2485671111, 2469363717, 1330346930, 2623488737, 1958899419,
]),
y: Array4xN([
869015362, 1303913274, 842048451, 2998827085, 1486265410, 3771523089, 3956677016,
2319947800, 4167697556, 3174143636, 820486910, 130118441,
]),
},
hmac_field_entropy_as_data_out_pub: Ecc384PubKey {
x: Array4xN([
735969067, 3049012269, 857888742, 684684485, 4194103772, 1793570427, 1430366021,
731826037, 58870749, 3416840020, 1596867363, 2600165352,
]),
y: Array4xN([
3945293618, 150193248, 768912283, 1992928474, 552325555, 2348526265, 299333051,
253904886, 3695053587, 1856777670, 4185130766, 2902538852,
]),
},
},
};
#[test]
fn test_generate_doe_vectors_when_debug_locked() {
let vectors = DoeTestVectors::generate(&DoeInput {
doe_obf_key: caliptra_hw_model_types::DEFAULT_CPTRA_OBF_KEY,
doe_iv: caliptra_drivers_test_bin::DOE_TEST_IV,
uds_seed: caliptra_hw_model_types::DEFAULT_UDS_SEED,
field_entropy_seed: caliptra_hw_model_types::DEFAULT_FIELD_ENTROPY,
// in debug-locked mode, this defaults to 0
keyvault_initial_word_value: 0x0000_0000,
});
assert_eq!(vectors, DOE_TEST_VECTORS);
}
#[test]
fn test_doe_when_debug_locked() {
let rom = caliptra_builder::build_firmware_rom(&firmware::driver_tests::DOE).unwrap();
let mut model = caliptra_hw_model::new(BootParams {
init_params: InitParams {
rom: &rom,
security_state: *SecurityState::from(0)
.set_debug_locked(true)
.set_device_lifecycle(DeviceLifecycle::Unprovisioned),
..Default::default()
},
..Default::default()
})
.unwrap();
let txn = model.wait_for_mailbox_receive().unwrap();
let test_results = DoeTestResults::read_from(txn.req.data.as_slice()).unwrap();
assert_eq!(test_results, DOE_TEST_VECTORS.expected_test_results);
}
#[test]
fn test_ecc384() {
run_driver_test(&firmware::driver_tests::ECC384);
}
#[test]
fn test_error_reporter() {
run_driver_test(&firmware::driver_tests::ERROR_REPORTER);
}
#[test]
fn test_hmac384() {
run_driver_test(&firmware::driver_tests::HMAC384);
}
#[test]
fn test_keyvault() {
run_driver_test(&firmware::driver_tests::KEYVAULT);
}
#[test]
fn test_mailbox_soc_to_uc() {
let mut model = start_driver_test(&firmware::driver_tests::MAILBOX_DRIVER_RESPONDER).unwrap();
// Test MailboxRecvTxn::recv_request()
{
let resp = model
.mailbox_execute(
0x5000_0000,
&[0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef],
)
.unwrap();
// With recv_request(), the mailbox transaction is completed as
// successful before the firmware as a chance to look at the buffer (!?),
// so give the firmware a chance to print it out.
model
.step_until_output(
"cmd: 0x50000000\n\
dlen: 8\n\
buf: [67452301, efcdab89, 00000000, 00000000]\n",
)
.unwrap();
model.output().take(usize::MAX);
assert_eq!(resp, None);
// Try again, but with a non-multiple-of-4 size
let resp = model
.mailbox_execute(0x5000_0000, &[0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd])
.unwrap();
model
.step_until_output(
"cmd: 0x50000000\n\
dlen: 7\n\
buf: [67452301, 00cdab89, 00000000, 00000000]\n",
)
.unwrap();
model.output().take(usize::MAX);
assert_eq!(resp, None);
// Try again, but with no data in the FIFO
let resp = model.mailbox_execute(0x5000_0000, &[]).unwrap();
model
.step_until_output(
"cmd: 0x50000000\n\
dlen: 0\n\
buf: [00000000, 00000000, 00000000, 00000000]\n",
)
.unwrap();
model.output().take(usize::MAX);
assert_eq!(resp, None);
// Try again, but with a non-multiple-of-4 dest buffer (0x5000_0001)
let resp = model
.mailbox_execute(0x5000_0001, &[0x01, 0x23, 0x45, 0x67, 0x89])
.unwrap();
model
.step_until_output(
"cmd: 0x50000001\n\
dlen: 5\n\
buf: [01, 23, 45, 67, 89]\n",
)
.unwrap();
model.output().take(usize::MAX);
assert_eq!(resp, None);
// Try again, but with one more byte than will fit in the dest buffer
let resp = model
.mailbox_execute(0x5000_0001, &[0x01, 0x23, 0x45, 0x67, 0x89, 0xab])
.unwrap();
model
.step_until_output(
"cmd: 0x50000001\n\
dlen: 6\n\
buf: [01, 23, 45, 67, 89]\n",
)
.unwrap();
model.output().take(usize::MAX);
assert_eq!(resp, None);
// Try again, but with 4 more bytes than will fit in the dest buffer
let resp = model
.mailbox_execute(
0x5000_0001,
&[0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x11],
)
.unwrap();
model
.step_until_output(
"cmd: 0x50000001\n\
dlen: 9\n\
buf: [01, 23, 45, 67, 89]\n",
)
.unwrap();
model.output().take(usize::MAX);
assert_eq!(resp, None);
}
// Test MailboxRecvTxn::copy_request
{
let resp = model
.mailbox_execute(
0x6000_0000,
&[
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x00, 0x11, 0x22, 0x33, 0x44,
0x55, 0x66, 0x77,
],
)
.unwrap();
assert_eq!(
model.output().take(usize::MAX),
"cmd: 0x60000000\n\
dlen: 16\n\
buf: [67452301, efcdab89]\n\
buf: [33221100, 77665544]\n"
);
assert_eq!(resp, None);
// Try again, but with a non-multiple-of-4 size
let resp = model
.mailbox_execute(
0x6000_0000,
&[
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x00, 0x11, 0x22, 0x33, 0x44,
],
)
.unwrap();
assert_eq!(
model.output().take(usize::MAX),
"cmd: 0x60000000\n\
dlen: 13\n\
buf: [67452301, efcdab89]\n\
buf: [33221100, 00000044]\n"
);
assert_eq!(resp, None);
// Try again, but where the buffer is larger than the last chunk
let resp = model
.mailbox_execute(
0x6000_0000,
&[
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x00, 0x11, 0x22, 0x33,
],
)
.unwrap();
assert_eq!(
model.output().take(usize::MAX),
"cmd: 0x60000000\n\
dlen: 12\n\
buf: [67452301, efcdab89]\n\
buf: [33221100, 00000000]\n"
);
assert_eq!(resp, None);
// Try again, but with no data in the FIFO
let resp = model.mailbox_execute(0x6000_0000, &[]).unwrap();
assert_eq!(
model.output().take(usize::MAX),
"cmd: 0x60000000\n\
dlen: 0\n"
);
assert_eq!(resp, None);
}
// Test MailboxRecvTxn completed with success without draining the FIFO
{
let resp = model
.mailbox_execute(0x7000_0000, &[0x88, 0x99, 0xaa, 0xbb])
.unwrap();
assert_eq!(model.output().take(usize::MAX), "cmd: 0x70000000\n");
assert_eq!(resp, None);
// Make sure the next command doesn't see the FIFO from the previous command
let resp = model
.mailbox_execute(0x6000_0000, &[0x07, 0x06, 0x05, 0x04, 0x03])
.unwrap();
assert_eq!(
model.output().take(usize::MAX),
"cmd: 0x60000000\n\
dlen: 5\n\
buf: [04050607, 00000003]\n"
);
assert_eq!(resp, None);
}
// Test MailboxRecvTxn completed with failure without draining the FIFO
{
assert_eq!(
model.mailbox_execute(0x8000_0000, &[0x88, 0x99, 0xaa, 0xbb]),
Err(ModelError::MailboxCmdFailed(0))
);
assert_eq!(model.output().take(usize::MAX), "cmd: 0x80000000\n");
// Make sure the next command doesn't see the FIFO from the previous command
let resp = model
.mailbox_execute(0x6000_0000, &[0x07, 0x06, 0x05, 0x04, 0x03])
.unwrap();
assert_eq!(
model.output().take(usize::MAX),
"cmd: 0x60000000\n\
dlen: 5\n\
buf: [04050607, 00000003]\n"
);
assert_eq!(resp, None);
}
// Test drop_words
{
let resp = model
.mailbox_execute(
0x9000_0000,
&[0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08],
)
.unwrap();
assert_eq!(
model.output().take(usize::MAX),
"cmd: 0x90000000\n\
dlen: 8\n\
buf: [08070605]\n"
);
assert_eq!(resp, None);
}
// Test 4 byte response with no request data
{
let resp = model.mailbox_execute(0xA000_0000, &[]).unwrap().unwrap();
assert_eq!(model.output().take(usize::MAX), "cmd: 0xa0000000\n");
assert_eq!(resp, [0x12, 0x34, 0x56, 0x78]);
}
// Test 2 byte response with request data
{
let resp = model
.mailbox_execute(0xB000_0000, &[0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0xa])
.unwrap()
.unwrap();
assert_eq!(
model.output().take(usize::MAX),
"cmd: 0xb0000000\n\
dlen: 6\n\
buf: [0c0d0e0f, 00000a0b]\n"
);
assert_eq!(resp, [0x98, 0x76]);
}
// Test 9 byte reponse
{
let resp = model.mailbox_execute(0xC000_0000, &[]).unwrap().unwrap();
assert_eq!(model.output().take(usize::MAX), "cmd: 0xc0000000\n");
assert_eq!(resp, [0x0A, 0x0B, 0x0C, 0x0D, 0x05, 0x04, 0x03, 0x02, 0x01]);
}
// Test reponse with 0 bytes (still calls copy_response)
{
let resp = model.mailbox_execute(0xD000_0000, &[]).unwrap().unwrap();
assert_eq!(model.output().take(usize::MAX), "cmd: 0xd0000000\n");
assert_eq!(resp, []);
}
}
#[test]
fn test_mailbox_uc_to_soc() {
let mut model = start_driver_test(&firmware::driver_tests::MAILBOX_DRIVER_SENDER).unwrap();
// 0 byte request
let txn = model.wait_for_mailbox_receive().unwrap();
assert_eq!(txn.req.cmd, 0xa000_0000);
assert_eq!(txn.req.data, b"");
txn.respond_success();
// 3 byte request
let txn = model.wait_for_mailbox_receive().unwrap();
assert_eq!(txn.req.cmd, 0xa000_1000);
assert_eq!(txn.req.data, b"Hi!");
// NOTE: The current driver doesn't actually look at the result
txn.respond_success();
// 4 byte request
let txn = model.wait_for_mailbox_receive().unwrap();
assert_eq!(txn.req.cmd, 0xa000_2000);
assert_eq!(txn.req.data, b"Hi!!");
txn.respond_success();
// 6 byte request
let txn = model.wait_for_mailbox_receive().unwrap();
assert_eq!(txn.req.cmd, 0xa000_3000);
assert_eq!(txn.req.data, b"Hello!");
txn.respond_success();
// 8 byte request
let txn = model.wait_for_mailbox_receive().unwrap();
assert_eq!(txn.req.cmd, 0xa000_4000);
assert_eq!(txn.req.data, b"Hello!!!");
txn.respond_success();
// write_cmd / write_dlen / execute_request used separately
let txn = model.wait_for_mailbox_receive().unwrap();
assert_eq!(txn.req.cmd, 0xb000_0000);
assert_eq!(txn.req.data, b"");
txn.respond_success();
}
#[test]
fn test_uc_to_soc_error_state() {
let mut model =
start_driver_test(&firmware::driver_tests::MAILBOX_DRIVER_NEGATIVE_TESTS).unwrap();
let txn = model.wait_for_mailbox_receive().unwrap();
let cmd = txn.req.cmd;
// Test the receiver can't change the command register when the FSM is in Exec state.
assert!(model.soc_mbox().cmd().read() == cmd);
model.soc_mbox().cmd().write(|_| cmd + 1);
assert!(model.soc_mbox().cmd().read() == cmd);
// Check we can't release the lock on the receiver side.
model.soc_mbox().execute().write(|w| w.execute(false));
assert!(model.soc_mbox().status().read().mbox_fsm_ps().mbox_error());
// Try to respond...
model
.soc_mbox()
.status()
.write(|w| w.status(|_| MboxStatusE::DataReady));
// But we're still in the error state
assert!(model.soc_mbox().status().read().mbox_fsm_ps().mbox_error());
// Wait for the test-case to force unlock the mailbox
model.step_until(|m| m.soc_mbox().status().read().mbox_fsm_ps().mbox_idle());
let _txn = model.wait_for_mailbox_receive().unwrap();
model.soc_mbox().execute().write(|w| w.execute(true));
assert!(model.soc_mbox().status().read().mbox_fsm_ps().mbox_error());
// Wait for the test-case to force unlock the mailbox
model.step_until(|m| m.soc_mbox().status().read().mbox_fsm_ps().mbox_idle());
}
#[test]
fn test_pcrbank() {
run_driver_test(&firmware::driver_tests::PCRBANK);
}
#[test]
fn test_sha1() {
run_driver_test(&firmware::driver_tests::SHA1);
}
#[test]
fn test_sha256() {
run_driver_test(&firmware::driver_tests::SHA256);
}
#[test]
fn test_sha384() {
run_driver_test(&firmware::driver_tests::SHA384);
}
#[test]
fn test_sha384acc() {
run_driver_test(&firmware::driver_tests::SHA384ACC);
}
#[test]
fn test_status_reporter() {
run_driver_test(&firmware::driver_tests::STATUS_REPORTER);
}
#[test]
fn test_lms_24() {
run_driver_test(&firmware::driver_tests::TEST_LMS_24);
}
#[test]
fn test_lms_32() {
run_driver_test(&firmware::driver_tests::TEST_LMS_32);
}
#[test]
fn test_negative_lms() {
run_driver_test(&firmware::driver_tests::TEST_NEGATIVE_LMS);
}
// Return a series of nibbles that won't fail health tests.
// Used for testing the CSRNG's "success paths".
fn trng_nibbles() -> impl Iterator<Item = u8> + Clone {
// reversed form of
// https://github.com/chipsalliance/caliptra-rtl/blob/fa91d66f30223899403f4e65a6f697a6f9100fd1/src/csrng/tb/csrng_tb.sv#L461
// cycled infintely to provide enough entropy bits for FIPS boot-time health checks
const TRNG_ENTROPY: &str = "749ED7B4E3DE4E72D5CF367FD9D137113493B80AAA65CD17ABEBCE4FB4E8150105CC347E06539656786DA75F56B36F33";
TRNG_ENTROPY
.chars()
.map(|b| b.to_digit(16).expect("bad nibble digit") as u8)
.cycle()
}
// Helper function to run CSRNG test binaries with specific entropy nibbles.
fn test_csrng_with_nibbles(fwid: &FwId<'static>, itrng_nibbles: Box<dyn Iterator<Item = u8>>) {
let rom = caliptra_builder::build_firmware_rom(fwid).unwrap();
let mut model = caliptra_hw_model::new(BootParams {
init_params: InitParams {
rom: &rom,
itrng_nibbles,
..Default::default()
},
..Default::default()
})
.unwrap();
model.step_until_exit_success().unwrap();
}
#[test]
fn test_csrng() {
test_csrng_with_nibbles(&firmware::driver_tests::CSRNG, Box::new(trng_nibbles()));
}
#[test]
fn test_csrng2() {
test_csrng_with_nibbles(&firmware::driver_tests::CSRNG2, Box::new(trng_nibbles()));
}
#[test]
fn test_csrng_repetition_count() {
// Tests for Repetition Count Test (RCT).
fn test_repcnt_finite_repeats(
test_fwid: &FwId<'static>,
repeat: usize,
soc_repcnt_threshold: Option<CptraItrngEntropyConfig1WriteVal>,
) {
let rom = caliptra_builder::build_firmware_rom(test_fwid).unwrap();
let itrng_nibbles = Box::new({
// The boot-time health testing requires two consecutive windows of 2048-bits to
// pass or fail health tests. So let's set up our windows to begin with the
// repeated bits followed by known good entropy bits.
const NUM_TEST_WINDOW_NIBBLES: usize = 2048 / 4;
let num_good_entropy_nibbles = NUM_TEST_WINDOW_NIBBLES.saturating_sub(repeat + 2);
iter::repeat(0b1111)
.take(repeat)
.chain(iter::once(0b0000)) // Break repetition
.chain(trng_nibbles().take(num_good_entropy_nibbles))
.chain(iter::once(0b0000)) // Break repetition
.cycle()
});
let mut model = caliptra_hw_model::new(BootParams {
init_params: InitParams {
rom: &rom,
itrng_nibbles,
..Default::default()
},
initial_repcnt_thresh_reg: soc_repcnt_threshold,
..Default::default()
})
.unwrap();
model.step_until_exit_success().unwrap();
}
// The following tests assumes the CSRNG driver will use this default threshold value.
const THRESHOLD: usize = 41;
const PASS: &FwId = &firmware::driver_tests::CSRNG_PASS_HEALTH_TESTS;
const FAIL: &FwId = &firmware::driver_tests::CSRNG_FAIL_REPCNT_TESTS;
// Bits that repeat up to (but excluding) the threshold times should PASS the RCT.
test_repcnt_finite_repeats(PASS, THRESHOLD - 1, None);
// Bits that repeat at least threshold times should FAIL the RCT.
test_repcnt_finite_repeats(FAIL, THRESHOLD, None);
// If at least one RNG wire has a stuck bit, RCT should fail.
test_csrng_with_nibbles(FAIL, Box::new(iter::repeat(0b1111)));
test_csrng_with_nibbles(FAIL, Box::new(iter::repeat(0b0000)));
test_csrng_with_nibbles(
FAIL,
Box::new({
// The third bit is stuck at zero.
[0b1011, 0b1010, 0b1000, 0b0000].into_iter().cycle()
}),
);
{
// Test finite repeats again, but this time, exercise the logic to read and set thresholds from
// SoC registers.
const THRESHOLD: usize = 20;
let soc_repcnt_threshold = Some(
CptraItrngEntropyConfig1WriteVal::from(CptraItrngEntropyConfig1::RESET_VAL)
.repetition_count(THRESHOLD as u32),
);
test_repcnt_finite_repeats(PASS, THRESHOLD - 1, soc_repcnt_threshold);
test_repcnt_finite_repeats(FAIL, THRESHOLD, soc_repcnt_threshold);
}
}
#[test]
fn test_csrng_adaptive_proportion() {
// Tests for Adaptive Proportion health check.
// Assumes the CSRNG configures the adaptive proportion's LO and HI
// thresholds to 25% and 75% of the FIPS health window size, i.e.,
// 512 and 1536 respectively for a 2048 bit window size.
// The adaptive proportion test will pass if the number of 1's in a 2048 bit window is in the
// range [512, 1536]. Note, inclusive bounds
const PASS: &FwId = &firmware::driver_tests::CSRNG_PASS_HEALTH_TESTS;
// 512 ones; 1536 zeros - should pass inclusive LO threshold.
test_csrng_with_nibbles(
PASS,
Box::new({
const WINDOW: [u8; 512] = *include_bytes!("test_data/csrng/512_ones_1536_zeros");
// Boot-time health checks require testing two 2048 bit windows.
WINDOW.into_iter().chain(WINDOW)
}),
);
// 1536 ones; 512 zeros - should pass inclusive HI threshold.
test_csrng_with_nibbles(
PASS,
Box::new({
const WINDOW: [u8; 512] = *include_bytes!("test_data/csrng/1536_ones_512_zeros");
WINDOW.into_iter().chain(WINDOW)
}),
);
// Otherwise, the test will fail if the number of 1's falls below the LO threshold or exceeds
// the HI threshold.
const FAIL: &FwId = &firmware::driver_tests::CSRNG_FAIL_ADAPTP_TESTS;
// 511 ones; 1537 zeros - should fail LO threshold.
test_csrng_with_nibbles(
FAIL,
Box::new({
const WINDOW: [u8; 512] = *include_bytes!("test_data/csrng/511_ones_1537_zeros");
WINDOW.into_iter().chain(WINDOW)
}),
);
// 1537 ones; 511 zeros - should fail HI threshold.
test_csrng_with_nibbles(
FAIL,
Box::new({
const WINDOW: [u8; 512] = *include_bytes!("test_data/csrng/1537_ones_511_zeros");
WINDOW.into_iter().chain(WINDOW)
}),
);
// Test the logic of reading thresholds from SoC registers.
// The SoC will set the HI and LO thresholds to 1224 and 824 respectively (+- 200 of 1024,
// which is half the test window size).
fn test_with_soc_threshold(test_fwid: &'static FwId, window: &'static [u8; 512]) {
const HI_THRESHOLD: u32 = 1224;
const LO_THRESHOLD: u32 = 824;
let rom = caliptra_builder::build_firmware_rom(test_fwid).unwrap();
let itrng_nibbles = Box::new(window.iter().chain(window).copied());
let threshold_reg =
CptraItrngEntropyConfig0WriteVal::from(CptraItrngEntropyConfig0::RESET_VAL)
.high_threshold(HI_THRESHOLD)
.low_threshold(LO_THRESHOLD);
let mut model = caliptra_hw_model::new(BootParams {
init_params: InitParams {
rom: &rom,
itrng_nibbles,
..Default::default()
},
initial_adaptp_thresh_reg: Some(threshold_reg),
..Default::default()
})
.unwrap();
model.step_until_exit_success().unwrap();
}
// 824 ones; 1224 zeros - should pass inclusive LO threshold.
test_with_soc_threshold(PASS, include_bytes!("test_data/csrng/824_ones_1224_zeros"));
// 1224 ones; 824 zeros - should pass inclusive HI threshold.
test_with_soc_threshold(PASS, include_bytes!("test_data/csrng/1224_ones_824_zeros"));
// 823 ones; 1225 zeros - should fail LO threshold.
test_with_soc_threshold(FAIL, include_bytes!("test_data/csrng/823_ones_1225_zeros"));
// 1225 ones; 823 zeros - should fail HI threshold.
test_with_soc_threshold(FAIL, include_bytes!("test_data/csrng/1225_ones_823_zeros"));
}
#[test]
#[cfg_attr(all(feature = "verilator", not(feature = "itrng")), ignore)]
fn test_trng_in_itrng_mode() {
// To run this test under verilator, use --features=verilator,itrng
let rom = caliptra_builder::build_firmware_rom(&firmware::driver_tests::TRNG_DRIVER_RESPONDER)
.unwrap();
let mut model = caliptra_hw_model::new(BootParams {
init_params: InitParams {
rom: &rom,
itrng_nibbles: Box::new(trng_nibbles()),
trng_mode: Some(TrngMode::Internal),
..Default::default()
},
..Default::default()
})
.unwrap();
let trng_block = model.mailbox_execute(0, &[]).unwrap();
assert_eq!(
trng_block,
Some(vec![
0x2f, 0x3c, 0x3d, 0xca, 0x53, 0xdb, 0x2a, 0x55, 0x5d, 0x9c, 0x74, 0xa9, 0xc3, 0xe4,
0xbb, 0xda, 0x53, 0x3b, 0x75, 0xcc, 0x22, 0xf0, 0x86, 0xe0, 0xda, 0xd9, 0x55, 0x13,
0x37, 0xe5, 0xc3, 0x69, 0x77, 0x65, 0xe6, 0x7e, 0x4d, 0x7b, 0x5a, 0xca, 0x16, 0xe6,
0x7e, 0x1f, 0xaa, 0xd8, 0x5c, 0x9a,
])
);
let trng_block = model.mailbox_execute(0, &[]).unwrap();
assert_eq!(
trng_block,
Some(vec![
0x96, 0xf0, 0x63, 0x7d, 0x79, 0xb9, 0xc, 0xfd, 0x84, 0x7e, 0x5e, 0x7b, 0x68, 0x6, 0xc9,
0x7c, 0x90, 0xdc, 0xde, 0x26, 0x63, 0x7d, 0x4, 0xcd, 0x98, 0x47, 0x79, 0x87, 0x97,
0x88, 0xfe, 0x2, 0xcd, 0xe8, 0xed, 0x1e, 0xe8, 0x10, 0x4b, 0xce, 0x93, 0xca, 0x24,
0xba, 0x80, 0xc2, 0x41, 0xae,
])
);
}
#[test]
#[cfg_attr(all(feature = "verilator", feature = "itrng"), ignore)]
fn test_trng_in_etrng_mode() {
let block0: [u32; 12] = [
0x65b11c74, 0xd4bd4965, 0x5031ec6a, 0x2deaad1e, 0xc0c5508f, 0xe7258dc9, 0xa0af9e7f,
0x43e173f0, 0xc614d147, 0x3a31be1b, 0x91227cd7, 0xfe61ed6c,
];
let block1: [u32; 12] = [
0x6e0780e0, 0x7f7e7385, 0xe43d14bb, 0x07faf8da, 0x0553a88e, 0x4b6bf699, 0x6e09b53a,
0x5d9c55c8, 0x0303cff9, 0xb9255124, 0x91f478c5, 0xdd186bc8,
];
let rom = caliptra_builder::build_firmware_rom(&firmware::driver_tests::TRNG_DRIVER_RESPONDER)
.unwrap();
let mut model = caliptra_hw_model::new(BootParams {
init_params: InitParams {
rom: &rom,
itrng_nibbles: Box::new([].iter().copied()),
etrng_responses: Box::new(
vec![
EtrngResponse {
delay: 10,
data: block0,
},
EtrngResponse {
delay: 20,
data: block1,
},
]
.into_iter(),
),
trng_mode: Some(TrngMode::External),