Skip to content

Latest commit

 

History

History
168 lines (139 loc) · 5.56 KB

File metadata and controls

168 lines (139 loc) · 5.56 KB

Step-by-Step

This document is used to list steps of reproducing TensorFlow Intel® Low Precision Optimization Tool tuning zoo result of bert large model on squad v1.1 task.

Prerequisite

1. Installation

# Install Intel® Low Precision Optimization Tool
pip install lpot

2. Install Intel Tensorflow 1.15 up2

Check your python version and use pip install 1.15.0 up2 from links below: https://storage.googleapis.com/intel-optimized-tensorflow/intel_tensorflow-1.15.0up2-cp36-cp36m-manylinux2010_x86_64.whl
https://storage.googleapis.com/intel-optimized-tensorflow/intel_tensorflow-1.15.0up2-cp37-cp37m-manylinux2010_x86_64.whl https://storage.googleapis.com/intel-optimized-tensorflow/intel_tensorflow-1.15.0up2-cp35-cp35m-manylinux2010_x86_64.whl

3. Prepare Dataset

wget https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_A-16.zip unzip wwm_uncased_L-24_H-1024_A-16.zip

wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json -P wwm_uncased_L-24_H-1024_A-16

wwm_uncased_L-24_H-1024_A-16. will be your data path

Automatic dataset download

Run the prepare_dataset.sh script located in examples/tensorflow/nlp/bert_large_squad.

Usage:

cd examples/tensorflow/nlp/bert_large_squad
bash prepare_dataset.sh --output_dir=./data

Then create the tf_record file, you should config the tf_record path in yaml file.

python create_tf_record.py --vocab_file=data/vocab.txt --predict_file=data/dev-v1.1.json --output_file=./eval.tf_record

4. Prepare Pretrained model

Manual approach

wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/bert_large_checkpoints.zip
unzip bert_large_checkpoints.zip

Automatic model download

Run the prepare_model.sh script located in examples/tensorflow/nlp/bert_large_squad.

Usage:

cd examples/tensorflow/nlp/bert_large_squad
bash prepare_model.sh --output_dir=./model

Prepare frozen pb from checkpoint

python freeze_estimator_to_pb.py --input_model=./model --output_model=./bert_fp32.pb

Run Command

python tune_squad.py --config=./bert.yaml --input_model=./bert_fp32.pb --output_model=./int8.pb --tune

Details of enabling Intel® Low Precision Optimization Tool on bert model for Tensorflow.

This is a tutorial of how to enable bert model with Intel® Low Precision Optimization Tool.

User Code Analysis

  1. User specifies fp32 model, calibration dataset q_dataloader, evaluation dataset eval_dataloader and metric in tuning.metric field of model-specific yaml config file.

  2. User specifies fp32 model, calibration dataset q_dataloader and a custom eval_func which encapsulates the evaluation dataset and metric by itself.

For bert, we applied the first one as we already have built-in dataset and metric for bert squad task.

Write Yaml config file

In examples directory, there is a bert.yaml. We could remove most of items and only keep mandatory item for tuning. We also implement a calibration dataloader and have evaluation field for creation of evaluation function at internal lpot.

model: 
  name: bert
  framework: tensorflow
  inputs: input_file, batch_size
  outputs: IteratorGetNext:3, unstack:0, unstack:1

evaluation:
  accuracy:
    metric:
      SquadF1:
    dataloader:
      dataset:
        bert:
          root: eval.tf_record
          label_file: dev-v1.1.json
      batch_size: 64
    postprocess:
      transform:
        SquadV1PostTransform:
          label_file: dev-v1.1.json
          vocab_file: vocab.txt
  performance:
    iteration: 50
    configs:
        num_of_instance: 7
        cores_per_instance: 4
    dataloader:
      dataset:
        bert:
          root: /path/to/eval.tf_record
          label_file: /path/to/dev-v1.1.json
      batch_size: 64

quantization:            
  calibration:
    sampling_size: 500
  model_wise:
    weight:
      granularity: per_channel
  op_wise: {
             'MatMul': {
               'activation':  {'dtype': ['fp32']},
               'weight':  {'dtype': ['fp32']},
             }
           }
tuning:
  accuracy_criterion:
    relative:  0.01   
  exit_policy:
    timeout: 0       
    max_trials: 100 
  random_seed: 9527

Here we set the input tensor and output tensors name into inputs and outputs field. In this case we calibrate and quantize the model, and use our calibration dataloader initialized from a 'Dataset' object.

Code update

After prepare step is done, we add tune and benchmark code to generate quantized model and benchmark.

Tune

        from lpot.quantization import Quantization
        quantizer = Quantization('./bert.yaml')
        quantizer.model = FLAGS.input_model
        q_model = quantizer()
        q_model.save(FLAGS.output_model)

Benchmark

        from lpot.experimental import Benchmark
        evaluator = Benchmark('./bert.yaml')
        evaluator.model = FLAGS.input_model
        results = evaluator()
        for mode, result in results.items():
            acc, batch_size, result_list = result
            latency = np.array(result_list).mean() / batch_size
            print('\n{} mode benchmark result:'.format(mode))
            print('Accuracy is {:.3f}'.format(acc))
            print('Batch size = {}'.format(batch_size))
            print('Latency: {:.3f} ms'.format(latency * 1000))
            print('Throughput: {:.3f} images/sec'.format(1./ latency))

The Intel® Low Precision Optimization Tool quantizer() function will return a best quantized model under time constraint.