forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_helper.py
646 lines (555 loc) · 22.9 KB
/
model_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
## @package model_helper
# Module caffe2.python.model_helper
from caffe2.python import core, scope, workspace
from caffe2.python.helpers.db_input import db_input
from caffe2.python.modeling import parameter_info
from caffe2.python.modeling.parameter_sharing import (
parameter_sharing_context,
)
from caffe2.python.optimizer_context import (
OptimizerContext,
DEFAULT_OPTIM,
)
from caffe2.python.regularizer_context import RegularizerContext
from itertools import chain
import logging
# _known_working_ops are operators that do not need special care.
_known_working_ops = [
"Accuracy",
"Adam",
"Add",
"Adagrad",
"SparseAdagrad",
"Adadelta",
"SparseAdadelta",
"AveragedLoss",
"Cast",
"Checkpoint",
"ConstantFill",
"Copy",
"CopyGPUToCPU",
"CopyCPUToGPU",
"DequeueBlobs",
"EnsureCPUOutput",
"ExpandDims",
"Flatten",
"FlattenToVec",
"LabelCrossEntropy",
"LearningRate",
"MakeTwoClass",
"MatMul",
"NCCLAllreduce",
"NHWC2NCHW",
"PackSegments",
"Print",
"PRelu",
"ReduceFrontSum",
"Scale",
"ScatterWeightedSum",
"Sigmoid",
"SortedSegmentSum",
"Snapshot", # Note: snapshot is deprecated, use Checkpoint
"Softmax",
"SoftmaxWithLoss",
"SquaredL2Distance",
"Squeeze",
"StopGradient",
"Summarize",
"Tanh",
"Transpose",
"UnpackSegments",
"WeightedSum",
"YellowFin"
]
class ModelHelper:
"""A helper model so we can manange models more easily. It contains net def
and parameter storages. You can add an Operator yourself, e.g.
model = model_helper.ModelHelper(name="train_net")
# init your weight and bias as w and b
w = model.param_init_net.XavierFill(...)
b = model.param_init_net.ConstantFill(...)
fc1 = model.FC([input, w, b], output, **kwargs)
or you can use helper functions in brew module without manually
defining parameter initializations and operators.
model = model_helper.ModelHelper(name="train_net")
fc1 = brew.fc(model, input, output, dim_in, dim_out, **kwargs)
"""
def __init__(self, name=None, init_params=True, allow_not_known_ops=True,
skip_sparse_optim=False, param_model=None, arg_scope=None):
self.name = name or "model"
self.net = core.Net(self.name)
if param_model is not None:
self.param_init_net = param_model.param_init_net
self.param_to_grad = param_model.param_to_grad
self.params = param_model.params
self._parameters_info = param_model._parameters_info
self._computed_params = param_model._computed_params
else:
self.param_init_net = core.Net(self.name + '_init')
self.param_to_grad = {}
self.params = []
self._parameters_info = {}
self._computed_params = []
self._param_info_deprecated = []
self._devices = []
self.gradient_ops_added = False
self.init_params = init_params
self.allow_not_known_ops = allow_not_known_ops
self.skip_sparse_optim = skip_sparse_optim
self.weights = []
self.biases = []
self._arg_scope = {
'order': "NCHW",
'use_cudnn': True,
'cudnn_exhaustive_search': False,
}
if arg_scope is not None:
# Please notice value as None is not acceptable. We are not checking it
# here because we already have check in MakeArgument.
self._arg_scope.update(arg_scope)
@property
def arg_scope(self):
return self._arg_scope
def get_name(self):
return self.name
def _infer_param_shape(self, param):
for op in self.param_init_net.Proto().op:
if str(param) in op.output:
for arg in op.arg:
if arg.name == "shape":
return list(arg.ints)
return None
def _update_param_info_deprecated(self):
assert len(self._param_info_deprecated) <= len(self.params)
for param in self.params[len(self._param_info_deprecated):]:
if not isinstance(param, core.BlobReference):
raise ValueError(
"Param %s must be a BlobReference!" % str(param))
self._param_info_deprecated.append(parameter_info.ParameterInfo(
param_id=len(self._param_info_deprecated),
param=param,
shape=self._infer_param_shape(param)))
for info in self._param_info_deprecated:
info.grad = self.param_to_grad.get(info.name)
def _normalize_tags(self, tags):
tags = tags or []
return set(tags) if isinstance(tags, list) else set([tags])
def create_param(self, param_name, shape, initializer, tags=None):
"""
Creates parameter with a given name and initializer.
If param_name is instance of BlobRefernce - then this blob will be used
to store parameter (no any logic will affect it's location).
If param_name is instance of a string type, then the final blob will
be created in the CurrentNameScope with the respect of all parameter
sharing logic, i.e. 'resolved_name_scope/param_name'.
Parameter sharing logic is going to override CurrentNameScope according
to the rules that are specified through ParameterSharing contexts,
all ParameterSharing contexts are applied recursively until there are no
extra overrides present, where on each step the best match will be
applied first.
The following examples should clarify the way ParameterSharing logic
works:
As an example if this function is called with parameter 'w':
a. Call from some scope 'global_scope' with no Parameter sharing:
'global_scope/w'
b. Call from scope 'scope_b', with override {'scope_b': 'scope_a'}:
'scope_a/w'
c. Call from scope 'scope_a', with override {'scope_a': ''}:
'scope_a/w'
d. Call from scope 'scope_b/shared', with overrides
{'scope_b/shared': 'scope_b', 'scope_b': 'scope_a'}:
'scope_a/w'
d. Call from scope 'scope_b/unshared', with overrides
{'scope_b/shared': 'scope_b', 'scope_b': 'scope_a'}:
'scope_a/unshared/w'
"""
# ParameterSharing works only for case when param_name is instance of
# a string type. If param_name is a BlobReference - no attempt for
# ParameterSharing will be applied.
if isinstance(param_name, core.BlobReference):
param_name = str(param_name)
elif isinstance(param_name, str):
# Parameter name will be equal to current Namescope that got
# resolved with the respect of parameter sharing of the scopes.
param_name = parameter_sharing_context.get_parameter_name(
param_name)
else:
raise TypeError("Unsupported type for param_name")
if param_name in self._parameters_info:
assert self._parameters_info[param_name].shape == shape
return self._parameters_info[param_name].blob
param_info = initializer.create_param(
param_name=core.BlobReference(param_name),
init_net=self.param_init_net,
shape=shape,
)
optim_context = OptimizerContext.current()
for tag in self._normalize_tags(tags):
if optim_context.has_optimizer(tag):
# param_info will check optimizer has not been set
param_info.optimizer = optim_context.get_optimizer(tag)
if not param_info.optimizer and optim_context.has_optimizer(DEFAULT_OPTIM):
param_info.optimizer = optim_context.get_optimizer(DEFAULT_OPTIM)
reg_context = RegularizerContext.current()
param_info.regularizer = reg_context
self._parameters_info[param_name] = param_info
# Add param to legacy structs as well, so all other functions for
# parameters are still working.
self.AddParameter(param_info.blob, tags)
return param_info.blob
def get_param_info(self, param):
assert isinstance(param, core.BlobReference), \
"Param {} is not a BlobReference".format(param)
return self._parameters_info.get(param, None)
# This method is deprecated, use create_param method which
# also does parameter initialization when needed
def add_param_DEPRECATED(self, param, key=None, shape=None, length=None):
logging.warning("add_param method is DEPRECATED")
self._update_param_info_deprecated()
self.AddParameter(param)
if key is not None and self.net.input_record() is not None:
idx = self.net.input_record().field_blobs().index(key)
key = self.net.input_record().field_names()[idx]
shape = shape if shape is not None else self._infer_param_shape(param)
if not isinstance(param, core.BlobReference):
raise ValueError("Param %s must be a BlobReference!" % str(param))
self._param_info_deprecated.append(parameter_info.ParameterInfo(
param_id=len(self._param_info_deprecated),
param=param,
shape=shape,
key=key,
length=length,
))
return self._param_info_deprecated[-1]
def AddParameter(self, param, tags=None):
assert isinstance(param, core.BlobReference)
tags = self._normalize_tags(tags)
if parameter_info.ParameterTags.COMPUTED_PARAM in tags:
self._computed_params.append(param)
else:
self.params.append(param)
if parameter_info.ParameterTags.WEIGHT in tags:
self.weights.append(param)
if parameter_info.ParameterTags.BIAS in tags:
self.biases.append(param)
@staticmethod
def _NormalizeNamescope(namescope):
if namescope is None:
return scope.CurrentNameScope()
elif namescope == '' or namescope.endswith(scope._NAMESCOPE_SEPARATOR):
return namescope
else:
return namescope + scope._NAMESCOPE_SEPARATOR
def GetParams(self, namescope=None, top_scope=False):
'''
Returns the params in current namescope
'''
namescope = ModelHelper._NormalizeNamescope(namescope)
if namescope == '':
return self.params[:]
else:
return [p for p in self.params if
p.GetNameScope().startswith(namescope)]
def Proto(self):
return self.net.Proto()
def InitProto(self):
return self.param_init_net.Proto()
def RunAllOnGPU(self, *args, **kwargs):
self.param_init_net.RunAllOnGPU(*args, **kwargs)
self.net.RunAllOnGPU(*args, **kwargs)
def CreateDB(self, blob_out, db, db_type, **kwargs):
dbreader = self.param_init_net.CreateDB(
[], blob_out, db=db, db_type=db_type, **kwargs)
return dbreader
def AddGradientOperators(self, *args, **kwargs):
if self.gradient_ops_added:
raise RuntimeError("You cannot run AddGradientOperators twice.")
self.Validate()
self.gradient_ops_added = True
self.grad_map = self.net.AddGradientOperators(*args, **kwargs)
self.param_to_grad = self.get_param_to_grad(self.params)
# Populate ParameterInfo for all parameters if missing
# and add gradient blob information. So optimizers can use it
for param, grad in self.param_to_grad.items():
param_info = self.get_param_info(param)
if param_info:
param_info.grad = grad
else:
self._parameters_info[param] = parameter_info.ParameterInfo(
param_id=None,
param=param,
grad=grad,
)
return self.grad_map
def get_param_to_grad(self, params):
'''
Given a list of parameters returns a dict from a parameter
to a corresponding gradient
'''
param_to_grad = {}
if not self.gradient_ops_added:
raise RuntimeError("You need to run AddGradientOperators first.")
# We need to use empty namescope when creating the gradients
# to prevent duplicating the namescope prefix for gradient blobs.
for p in params:
if str(p) in self.grad_map:
param_to_grad[p] = self.grad_map[str(p)]
return param_to_grad
def GetOptimizationParamInfo(self, params=None):
'''
Returns a map for param => grad.
If params is not specified, all parameters will be considered.
'''
if not self.gradient_ops_added:
raise RuntimeError("Need to call AddGradientOperators first")
param_to_grad = self.param_to_grad
if params:
param_to_grad = self.get_param_to_grad(params)
return [
self.get_param_info(param) for param, grad in param_to_grad.items()
if (
not self.skip_sparse_optim or
not isinstance(grad, core.GradientSlice)
)
]
def _Validate(self):
'''
Check for duplicate params
'''
params_list = [str(p) for p in self.params]
params_set = set(params_list)
dupes = []
if len(params_set) != len(params_list):
params_list = sorted(params_list)
for j, p in enumerate(params_list):
if j > 0 and params_list[j - 1] == p:
if p not in dupes:
dupes.append(p)
return dupes
def Validate(self):
dupes = self._Validate()
assert dupes == [], "Duplicate params: {}".format(dupes)
def GetComputedParams(self, namescope=None):
'''
Returns the computed params in current namescope. 'Computed params'
are such parameters that are not optimized via gradient descent but are
directly computed from data, such as the running mean and variance
of Spatial Batch Normalization.
'''
namescope = ModelHelper._NormalizeNamescope(namescope)
if namescope == '':
return self._computed_params[:]
else:
return [p for p in self._computed_params
if p.GetNameScope().startswith(namescope)]
def GetAllParams(self, namescope=None):
return self.GetParams(namescope) + self.GetComputedParams(namescope)
def TensorProtosDBInput(
self, unused_blob_in, blob_out, batch_size, db, db_type, **kwargs
):
"""TensorProtosDBInput."""
assert len(unused_blob_in) == 0, \
"""You cannot pass reader to model_helper.TensorProtosDBInput.
Use model.net.TensorProtosDBInput instead to create the op."""
return db_input(
self, blob_out, batch_size, db, db_type, **kwargs)
def GetDevices(self):
assert len(self._devices) > 0, \
"Use data_parallel_model to run model on multiple GPUs."
return self._devices
def __getattr__(self, op_type):
"""Catch-all for all other operators, mostly those without params."""
if op_type.startswith('__'):
raise AttributeError(op_type)
if not core.IsOperator(op_type):
raise AttributeError(
'Method ' + op_type + ' is not a registered operator.' +
' Did you mean: [' +
','.join(workspace.C.nearby_opnames(op_type)) + ']'
)
if op_type not in _known_working_ops:
if not self.allow_not_known_ops:
raise AttributeError(
"Operator {} is not known to be safe".format(op_type))
logging.warning("You are creating an op that the ModelHelper "
"does not recognize: {}.".format(op_type))
return self.net.__getattr__(op_type)
def __dir__(self):
return sorted(set(chain(
dir(type(self)),
self.__dict__.keys(),
_known_working_ops
)))
def GetCompleteNet(self):
r""" Return param_init_net + net Net.
Returns:
'core.Net' containing param_init_net and net
"""
new_net = self.param_init_net.Clone(
self.name + "_complete_net", keep_schema=True)
# add init net info to debug info
for op in new_net.Proto().op:
op.debug_info = op.debug_info + "/param_init_net"
new_net.AppendNet(self.net)
# keep the execution optimization
if self.net.Proto().HasField("type"):
new_net.Proto().type = self.net.Proto().type
return new_net
def ConstructInitTrainNetfromNet(self, net):
r""" construct init net and train net from complete_net
Inputs:
net: 'core.Net' containing param_init_net and train net
"""
param_op_mask = []
train_op_mask = []
for idx, op in enumerate(net.Proto().op):
if op.debug_info.endswith("/param_init_net"):
param_op_mask.append(idx)
else:
train_op_mask.append(idx)
self.param_init_net = net.Clone(
net.Name() + "/generated_param_init_net",
keep_schema=True,
op_id_mask=param_op_mask,
update_external_list=True,
)
self.net = net.Clone(
net.Name() + "/generated_net",
keep_schema=True,
op_id_mask=train_op_mask,
update_external_list=True,
)
def ExtractPredictorNet(
net_proto,
input_blobs,
output_blobs,
device=None,
renames=None,
disabled_inputs=None,
):
'''
Takes a model net for training and returns a net which can be
used for prediction. For example, all gradient operators and
input operators are removed.
@param net_proto protobuf of the net you want to process (net.Proto())
@param input_blobs list/set of blob names that are the inputs of predictor
@param output_blobs list/set of blob names that are outputs of predictor
@param device optional device option that is assigned
@param renames dictionary of blob name to a new name (optional)
@param disabled_inputs optional set of blobs that are 'switched off'. This
will cause branches with those blobs as inputs to be removed
'''
predict_net = core.Net(net_proto.name + "_predict")
predict_proto = predict_net.Proto()
orig_external_inputs = set(net_proto.external_input)
orig_external_outputs = set(net_proto.external_output)
input_blobs = {str(b) for b in input_blobs}
known_blobs = set(orig_external_inputs).union(input_blobs)
output_blobs = {str(b) for b in output_blobs}
external_inputs = set(input_blobs)
external_outputs = set(output_blobs)
if renames is None:
renames = {}
if disabled_inputs is not None:
known_blobs = known_blobs - set(disabled_inputs)
ops = list(net_proto.op)
# Find the range of ops that we should include
try:
first_op_with_input = min(
[
j for j in range(len(ops))
if input_blobs.intersection(ops[j].input) and ops[j].type !=
'StopGradient'
]
)
except ValueError as e:
raise Exception("No ops with input={}".format(input_blobs)) from e
try:
last_op_with_output = max(
[
j for j in range(len(ops))
if output_blobs.intersection(ops[j].output)
]
)
except ValueError as e:
raise Exception("No ops with output={}".format(output_blobs)) from e
def validate_op(op):
# Check that the op does not have is_test = 0 set. This is a common
# pitfall with SpatialBN op, at lest.
for arg in op.arg:
if arg.name == "is_test" and arg.i == 0:
raise Exception(
"An operator had is_test=0, did you try to extract a " +
"predictor from a train model (instead of test model)?" +
" Op was: {}".format(str(op))
)
def rename_list(proto_list):
# proto lists don't support assignments
new_list = proto_list[:]
for j, b in enumerate(new_list):
if b in renames:
new_list[j] = renames[b]
del proto_list[:]
proto_list.extend(new_list)
# Iterate through the ops and only include those whose inputs
# we can satisfy.
for op in ops[first_op_with_input:(last_op_with_output + 1)]:
if known_blobs.issuperset(op.input):
# Special handling for recurrent nets
# TODO: when standard argument type for "nets" is introduced,
# this can be more general
if op.type == 'RecurrentNetwork':
for arg in op.arg:
if arg.name == 'backward_step_net':
arg.ClearField(str('n'))
elif arg.name == 'step_net':
for step_op in arg.n.op:
rename_list(step_op.input)
rename_list(step_op.output)
if device is not None:
step_op.device_option.device_type = device.device_type
step_op.device_option.device_id = device.device_id
rename_list(arg.n.external_input)
rename_list(arg.n.external_output)
# Add additional external inputs
external_inputs.update(
set(arg.n.external_input).intersection(
orig_external_inputs
)
)
if device is not None:
op.device_option.device_type = device.device_type
op.device_option.device_id = device.device_id
validate_op(op)
predict_proto.op.extend([op])
known_blobs.update(op.output)
external_inputs.update(
set(op.input).intersection(orig_external_inputs)
)
external_outputs.update(
set(op.output).intersection(orig_external_outputs)
)
else:
logging.debug(
"Op {} had unknown inputs: {}".format(
op.type, set(op.input).difference(known_blobs)
)
)
# Predictor net's external inputs and outputs include only those
# that are part of this net.
predict_proto.external_input.extend(external_inputs)
predict_proto.external_output.extend(external_outputs)
rename_list(predict_proto.external_input)
rename_list(predict_proto.external_output)
renamed_input_blobs = []
for b in input_blobs:
if b in renames:
renamed_input_blobs.append(renames[b])
else:
renamed_input_blobs.append(b)
for op in predict_proto.op:
rename_list(op.input)
rename_list(op.output)
return predict_net, list(
set(predict_proto.external_input) - set(renamed_input_blobs)
)